
Transformation-based Implementation
of S-expression Based C Languages

by

Tasuku Hiraishi

Abstract

This thesis presents schemes for transformation-based implementation of language exten-

sion to the C language, which reduce implementation costs and enhance the capability

of language extension by translation into C. We also present its practical applications.

The C language is often indispensable for developing practical systems, but it is not

an easy task to extend the C language by adding a new feature such as fine-grained

multi-threading. We can implement language extension by modifying a C compiler, but

sometimes we can do it by translating an extended C program into C code. In the latter

method, we usually convert the source program to an Abstract Syntax Tree (AST),

apply analysis or transformation necessary for the extension, and then generate C code.

Structures, objects (in object-oriented languages), or variants are traditionally used as

the data structure for an AST. In this research, we propose a new scheme where an

AST is represented by an S-expression and such an S-expression is also used as (part

of) a program. For this purpose we have designed the SC language, the C language

with an S-expression based syntax. This scheme allows rapid prototyping of language

extension because (1) adding new constructs to the SC language is easy, (2) S-expressions

can easily be read/printed, analyzed, and transformed in the Common Lisp language,

which features dynamic variables useful for translation. Since pattern-matching cannot

be described directly in Common Lisp, we also propose describing transformation rules

with patterns using the backquote-macro notation. Furthermore, we provide features to

extend an existing transformation phase (rule-set). This enables us to implement many

transformation rule-sets only by describing the difference, and helps us use commonly-

used rule-sets as part of the entire transformation.

This thesis also presents the LW-SC (LightWeight-SC) language as an important

application of this system, which features nested functions (i.e., a function defined in-

side another function). Without returning from a function, the function can manipulate

its caller’s local variables (or local variables of its indirect callers) by indirectly calling a

nested function of its (indirect) caller. Thus, many high-level services that require “stack

walk” can be implemented by using LW-SC as an intermediate language, with the main-

tained advantages of transformation-based implementation such as portability and lower

implementation cost. Moreover, such services can be efficiently implemented because

we design and implement LW-SC so that it provides “lightweight” nested functions by

aggressively reducing the costs of creating and maintaining nested functions.

Actually we implemented several features such as multi-threading and copying

garbage collection by extending LW-SC. The Tascell language is significant one of such

applications. Another significant application is Tascell, which realizes our new dynamic

load balancing scheme—backtracking-based load balancing. A worker basically performs

a computation sequentially, but when it receives a task request from another idle worker,

it creates a new task by dividing the remaining computation and returns the new task.

In order to reduce the total number of created tasks, each task should be as large as

possible. In our scheme, the worker achieves this by performing temporary backtracking

before creating the task. What make our scheme better than LTC-based implementations

of multi-threaded languages such as MultiLisp and Cilk are elimination of unnecessary

concurrency and lazy allocation of working spaces; our approach does not create mul-

tiple logical threads as potential tasks or does not need to manage a queue for them.

Therefore the overhead can be quite low. In a sequential computation, a single working

space can be reused naturally and spatial locality can be improved. Furthermore, pro-

grams for various search problems can be written elegantly and run very efficiently even

in fine-grained computations because they can delay copying between working spaces

by using backtracking. We prototyped a programming language and a framework that

realize these ideas. Programmers can write a worker program based on an existing se-

quential program augmented with new constructs in this language. Our approach also

enables a single program to run in both shared and distributed (and also hybrid) memory

environments with reasonable efficiency.

2

Contents

1 Introduction 1

1.1 Background . 1

1.2 Our Proposal . 2

1.3 Contributions . 3

1.4 Organization of the Thesis . 5

2 The SC Language System 7

2.1 Overview . 7

2.2 The SC-0/1 Language and the SC Compiler 8

2.2.1 Expressions . 9

2.2.2 Statements . 9

2.2.3 Type expressions and type definitions 9

2.2.4 Declarations . 12

2.2.5 Definitions of enumerations, structs and unions 12

2.3 SC Preprocessors . 13

2.4 SC Translators and Transformation Rules 15

2.4.1 Defining rule-sets . 15

2.4.2 Defining rules . 16

2.4.3 Patterns . 17

2.4.4 Applying rule-sets . 18

2.4.5 Applying rules . 18

2.4.6 Example . 18

2.5 Implementation . 21

i

3 Evaluation and Discussion 23

3.1 Implementation Cost for Language Extension 23

3.1.1 The extended language for evaluation 23

3.1.2 Implementation strategy . 23

3.1.3 Comparison of the implementation costs 25

3.2 Discussion . 26

3.2.1 Extensibility of rule-sets . 26

3.2.2 Ease of use . 28

4 Transformation-based Implementation of Lightweight Nested Functions 30

4.1 Introduction . 30

4.2 Language Specification of LW-SC . 31

4.3 GCC’s Implementation of Nested Functions 32

4.4 Implementation of LW-SC . 33

4.4.1 Basic ideas . 33

4.4.2 Transformation strategy . 34

4.4.3 Transformation rule-sets . 36

4.5 Evaluation . 45

4.5.1 Creation and maintenance cost 45

4.5.2 Invocation cost . 49

4.6 Implementation of High-level Services . 51

4.6.1 HSC—Copying GC . 51

4.6.2 MT-SC—Multi-threading . 53

4.7 Related Work . 56

4.7.1 Compiler-based implementations of nested functions 56

4.7.2 Closure objects in modern languages 56

4.7.3 Portable assembly languages . 56

4.7.4 High-level services . 57

5 Using Existing C Header Files in SC Based on Translation from C to

SC 60

ii

5.1 Why We Need Translation from C to SC 60

5.2 Implementation . 62

5.2.1 Overview . 62

5.2.2 Translation of C macros into SC macros 64

5.2.3 Countermeasures . 65

5.3 Evaluation and Discussion . 68

5.3.1 Translation results from the standard POSIX header files 68

5.3.2 Safety of translation . 72

5.3.3 Prompting by multiple candidates 75

5.4 Related Work . 76

5.4.1 Foreign function interfaces . 76

5.4.2 Including C header files in C++ 76

6 Backtracking-based Load Balancing 78

6.1 Introduction . 78

6.2 Motivating Examples . 79

6.3 Our approach . 82

6.4 Tascell Framework . 86

6.4.1 Overview . 86

6.4.2 Tascell Language . 89

6.5 Implementation . 93

6.6 Related work . 96

6.7 Evaluation . 97

7 Related Work 105

7.1 Language Extensions by Code Translation 105

7.2 Lower-Level Scheme . 105

7.3 Reflection . 106

7.4 Aspect Oriented Programming . 106

7.5 Pattern-matching . 106

7.6 Another S-Expression Based C . 107

iii

7.7 Other Rule-based Transformations . 107

7.7.1 Expert systems . 107

7.7.2 Rewriting rules . 107

7.7.3 XML . 107

7.8 Programs as Lisp Macro Forms . 108

8 Conclusion and Future Work 109

A The Syntax of the SC-1 Language 111

A.1 External Declarations . 111

A.2 Declarations . 111

A.3 Type-expressions . 114

A.4 Statements . 115

A.5 Expressions . 116

B An Example of Translation from LW-SC to SC-1 118

C Message Protocol in Tascell Framework 125

iv

List of Figures

2.1 Code translation phases in the SC language system. 8

2.2 An SC-0 program. 8

2.3 C program equivalent to the SC-0 program in Figure 2.2. 8

2.4 Transformation rule-sets. 19

2.5 Implementation code for defining rule-sets. 21

3.1 A labeled break/continue (in SC-0). 24

3.2 A labeled break/continue (in Cilk). 24

3.3 Implementation of labeled break and continue statements in C. 24

3.4 The transformation rule for labeled break and continue statements. . . 25

3.5 The earlier version of transformation rules. 27

3.6 A rule-set as part of the entire transformation. 28

3.7 Applying multiple rule-sets. 28

3.8 Extending the sc1-to-sc0 rule-set for MT-SC. 29

4.1 A LW-SC program. 32

4.2 Details of an indirect call to the nested function g1 in Figure 4.1. 36

4.3 An example for the lw-type rule-set (before transformation). 38

4.4 An example for the lw-type rule-set (after transformation). 38

4.5 The lw-type rule-set (abbreviated). 39

4.6 An example for the lw-temp rule-set (before transformation). 40

4.7 An example for the lw-temp rule-set (after transformation). 40

4.8 The lw-temp rule-set (abbreviated). 41

4.9 The lightweight rule-set (abbreviated). 43

v

4.10 The untype rule-set. 45

4.11 The LW-SC program for BinTree. 46

4.12 The LW-SC program for Bin2List. 46

4.13 The LW-SC program for fib(34). 47

4.14 Elapsed time in QSort against the number of intermediate function calls. 50

4.15 The LW-SC program of QSort (calling the sorting function by passing a

nested function comp-mod as a comparator). 50

4.16 An HSC program. 53

4.17 Scanning stack implemented by nested functions in LW-SC. 53

4.18 An MT-SC program. 54

4.19 Multi-threading implemented by LW-SC. 55

5.1 Translation flow in C2SC Compiler. 62

5.2 C macros which are difficult to translate into SC macros. 64

5.3 The macros that failed to be translated. 70

5.4 The macros that caused prompting. 71

5.5 Nested macro expansion. 74

6.1 A C program for Fibonacci. 80

6.2 A C program for Pentomino. 80

6.3 A naively-parallelized program for Fibonacci. 81

6.4 A naively-parallelized program for Pentomino. 83

6.5 An task partitioning of a computation of fib(40) in Tascell; a new task for

a computation of fib(38) is spawned. 84

6.6 An task partitioning of Pentomino in Tascell; a new task for half iterations

in the first step is spawned. 85

6.7 A multi-stage overview of the Tascell framework. 86

6.8 A Tascell program for Fibonacci. 87

6.9 A Tascell Program for Pentomino. 88

6.10 The translation result from the worker function fib in Figure 6.8, includ-

ing translation of a do two statement. 94

vi

6.11 The translation result from the worker function search for Pentomino

in Figure 6.9, including translation of a parallel for statement and a

dynamic wind statement. 95

6.12 Speedups with multiple computation nodes each using one worker (corre-

sponding to Table 6.3) . 103

6.13 Speedups with multiple computation nodes each using 4 workers (corre-

sponding to Table 6.4) . 103

vii

List of Tables

2.1 SC-1 expressions. 10

2.2 SC-1 statements. 10

2.3 SC-1 declarations/definitions of variables/functions. 13

2.4 SC-1 declarations/definitions of enumerations, structs and unions. 14

3.1 Comparison of implementation costs for labeled breaks and continues. . 26

4.1 Performance measurements (for the creation and maintenance cost). . . . 47

4.2 Performance measurements (for the invocation cost). 49

5.1 The header files used for evaluation. 69

6.1 Performance measurements with one worker. 98

6.2 Execution time T(k,1) (and relative speedup) with k workers in a shared

memory environment within one node. 100

6.3 Elapsed time T(1,`) (and relative speedup) with ` distributed nodes each

using one workers. 101

6.4 Elapsed time T(4,`) (and relative speedup) with ` distributed nodes each

using 4 workers. 102

viii

Acknowledgments

First, I would like to thank my greatest supervisor, Professor Taiichi Yuasa, for his

invaluable supports and directing me to this interesting research area.

I would also like to my Prof. Masahiro Yasugi, who has led my research. He is

great resources for discussing ideas and concerns. He is extremely helpful and willing to

dedicate time to helping me.

I also deeply appreciate reviewers of my thesis, Prof. Masahiko Sato and Prof. Hiroshi

Okuno, who gave me valuable advice.

The SC project has been a team effort and I am indebted to all the people who have

contributed in some way to the SC language system.

Finally, I would like to thank my family. Their support has always been important

to me.

The research was supported in part by the 21st century COE program in Japan.

Chapter 1

Introduction

1.1 Background

The C language is indispensable for developing practical systems, and it is often the case

that a new language with features such as fine-grained multi-threading is developed as

an extended C language. We can implement such a language extension by modifying a

C compiler, but sometimes we can do it by translating an extended C program to an

Abstract Syntax Tree (AST), applying analysis or transformation necessary for the ex-

tension, and then generating C code. Structures, objects (in object-oriented languages),

or variants are traditionally used as the data structure for an AST. Actually, Cilk [10]

and OPA [49] are implemented in this way.

Such a transformation-based strategy reduces implementation costs of language ex-

tension because implementing a translator is much easier than modifying a C compiler

and we need not to implement for various platforms.

However, there remains a problem from the viewpoint of implementation cost; we

need to implement not only programs for transformation but also a lexer and a parser

for each extension. This problem is significant especially when adding new constructs

for the extended language, because we must modify the lexer and the parser each time

we change the specification.

The Lisp language [42] allows us to add new constructs to itself easily by its powerful

macro facility and its S-expression based syntax; an S-expression, a syntactic unit in

1

Lisp, is not only suitable for analysis and transformation but also easy to hand-code

in. You can implement even a totally new language as a translator to Lisp using the

macro facility [12]. Unfortunately, since Lisp is a highly abstract language, it is not

applicable to developing language features which require low level operations (such as

address operations).

Note that even C has such a problem. Though C is much less abstract than Lisp,

it lacks some ability necessary for implementing some kind of language features. For

example, when implementing high-level services with “stack walk” such as capturing a

stack state for check-pointing and scanning roots for copying GC (Garbage Collection),

we need to access variables “sleeping” in the execution stack (variables located below

a current frame). But a standard C program cannot do it without taking “memory”

addresses of the variables. Traditionally, this problem is handled by using assembly op-

erations as part of generated code at the cost of portability, by managing execution stack

in the heap at the cost of efficiency, or by service-specific and elaborate implementation

techniques.

Another solution to this problem is to use a language other than C as a target of the

translation. For instance, the C-- language [23, 35] is developed for this purpose and has

the ability to access sleeping variables by using special operations for “stack walk.” We

also developed XC-cube, an extended C language with some primitives added for safe

and efficient shared memory programming [58]. XC-cube programs can access sleeping

variables by using nested functions [59], functions defined inside another function. These

languages are portable and work efficiently, but are less commonly-used than C—we

would like standard C to adopt some features of XC-cube, but that seems hard in the

immediate future.

1.2 Our Proposal

This thesis proposes an extension scheme for SC languages (extended/plain C languages

with an S-expression based syntax), in which each AST is represented by an S-expression

and such S-expressions are also used as (part of) a program. This scheme enables us to

implement various language extensions to C at low cost because it is easy to add new

2

constructs to an SC language, and because we can make use of the existing Common

Lisp capabilities for reading/printing, analyzing, and transforming S-expressions. We

also developed the SC language system in Common Lisp. In this language system,

extensions are implemented by transformation rules over S-expressions, that is, Lisp

functions which perform pattern-matching on S-expressions.

This system is helpful especially to programming language developers who want to

rapid-prototype their implementation ideas and is also useful to C programmers who

want to customize the language as easily as Lisp programmers usually do.

We also propose a solution to the above-mentioned problem which arises from C’s

inability to access variables sleeping in the execution stack. Our solution uses nested

functions which are translated into standard C functions. Each function can manipu-

late its caller’s local variables (or local variables of its indirect callers) sleeping in the

execution stack by calling a nested function of its caller. For this purpose, we im-

plemented the LW-SC (Lightweight SC) language, which features nested functions as

a language extension to C. Many high-level services with “stack walk” can be easily

and elegantly implemented by using LW-SC as an intermediate language. Moreover,

such services can be efficiently implemented because we design and implement LW-SC

to provide “lightweight” nested functions by aggressively reducing the costs of creating

and maintaining nested functions. We can also preserve portability because LW-SC is

implemented as a translator to standard C,

We presents some practical examples of language extensions which actually use LW-

SC, which include a significant example which realizes our novel idea on dynamic load

balancing.

1.3 Contributions

This thesis makes the following contributions:

• The SC-1 language, the language with the C semantics and an S-expression based

syntax, gives programmers the option to write C program in the alternative syntax;

in particular, seasoned Lisp programmer will prefer the syntax. SC-1 takes advan-

tage of the S-expression based notation. For example, declarations/definitions with

3

type expressions in SC-1 are more readable than those in C, and SC programmers

can use a powerful macro facility.

• The SC-1 language also enables language developers to rapid-prototype their lan-

guage in cases in which the language can be implemented by translation into C.

The implementation can be done by transformation over S-expressions, from the

being developed language to SC-1, which is easily done by using the Lisp capabil-

ities. Furthermore, the SC language system provides the following extensions to

Common Lisp which help implementation of transformation:

– The pattern-matching facility over S-expressions. We adopted intuitive backquote-

macro-like notation in consideration of symmetry between patterns and ex-

pressions.

– The facility to implement a transformation phase by extending existing phases,

like classes of object-oriented languages. This enables us to implement trans-

formation phases only by describing the difference.

Some of these extensions are useful for general Lisp programming.

• The LW-SC language, an extended SC-1 language which features nested function,

enables us to implement high-level services which require “stack walk,” in a unified

way. The implementations are portable and efficient.

• C2SC Compiler, a translator from C to SC-1, enables SC programmers to use

existing C header files. It can translate type information declared in C header files

and, unlike existing foreign function interfaces, enables us to use some #define

macros by translating them into SC macros. Our ideas here can also be applied

for other languages.

• Backtracking-based load balancing, our new dynamic load balancing scheme, is re-

alized by the Tascell language, which is implemented using the SC language system

and LW-SC. This scheme achieves quite low overhead for load balancing and im-

proves spatial locality in a sequential computation. Furthermore, programs for

4

various search problems can be written elegantly and run very efficiently even in

fine-grained computations because they can delay copying between working spaces

by using backtracking. Our approach also enables a single program to run in both

shared and distributed (and also hybrid) memory environments with reasonable

efficiency. We evaluated the performance and showed that Tascell runs more effi-

ciently than Cilk in many applications.

1.4 Organization of the Thesis

The organization of this thesis is as follows.

Chapter 2 describes the SC language system. We first give an overview, and then

show the details of its components and the base SC languages of the system. We also

show how to implement language extensions using this system.

Chapter 3 evaluates our scheme for implementing language extension from the view-

point of ease of use and implementation cost.

Chapter 4 introduces the LW-SC language as a practical implementation example

of language extension using the SC language system. We also show implementation

techniques for “lightweight” nested functions. As mentioned above, this extension is not

just an example but has its own significance; it enables us to implement many high-

level services easily and elegantly by using LW-SC as an intermediate language. In fact,

multi-threading and copying GC (Garbage Collection) are described as examples of such

implementations.

Chapter 5 introduces C2SC Compiler, a C-to-SC translator. Such a “reverse” trans-

lator is needed when SC requires header files corresponding to existing C header files.

Despite the equivalence of the semantics of C and SC-1, the translation is not obvious.

In particular, it is not always possible to translate #define macro definitions mainly be-

cause C allows syntactically incomplete token strings as an expanded code. This chapter

discusses the limitations of the translation and proposes pragmatic and reasonable solu-

tions to them.

Chapter 6 describes an attractive application of the SC language system and the

LW-SC language, the Tascell language. Tascell is a parallel language which realizes

5

our novel idea on dynamic load balancing, backtracking-based load balancing. Thus

Chapter 6 is written for more a proposition of the new scheme than an illustration of an

implementation of language extension.

Chapter 7 reviews related work that is relevant with the SC language system and our

scheme for language extension. (Note that Chapters 4 to 6 also have their own related

work sections.)

Finally Chapter 8 summarizes this thesis.

6

Chapter 2

The SC Language System

2.1 Overview

The SC language system, implemented in Common Lisp, deals with SC languages, which

include

• SC-0, the base SC language, and

• extended SC-0 languages,

and consists of the following three kinds of modules:

• SC preprocessors—include SC files and handles macro definitions and expansions,

• SC translators—typically implemented by developers of language extension and

transform an SC program into another SC program, and

• The SC compiler—compiles SC-0 code into C.

Figure 2.1 shows code translation phases in the SC language system. An extended

SC code is transformed into SC-0 by the SC translators, then translated into C by the

SC compiler. Before each transformation/translation is applied, preprocessing by an SC

preprocessor is performed. As the figure shows, a series of translators can be applied one

by one to get SC-0 code. Extension implementers write transformation rule-sets for the

SC translators to transform the extended language into SC-0.

7

executable file

SC compiler C compiler

transformation rule-set B

extended SC-A code C code

SC translator

SC translator SC translator

extended SC-B code

extended SC-C code

transformation rule-set A

transformation rule-set C SC-0 code

libraries

SC preprocessorSC preprocessor

SC preprocessor SC preprocessor

Figure 2.1: Code translation phases in the SC language system.

(def (sum a n) (fn int (ptr int) int)
(def s int 0)
(def i int 0)
(do-while 1

(if (>= i n) (break))
(+= s (aref a (inc i))))

(return s))

Figure 2.2: An SC-0 program.

int sum (int* a, int n)
{
int s=0;
int i=0;
do{
if (i >= n) break;
s += a[i++];

} while(1);
return s;

}

Figure 2.3: C program equivalent to
the SC-0 program in Figure 2.2.

2.2 The SC-0/1 Language and the SC Compiler

The SC-0 language is designed as the final target language of transformation by trans-

formation rules. It has the following features:

• an S-expression based, Lisp like syntax,

• the C semantics; actually most of C code can be represented in SC-0 in a straight-

forward manner, and

• practical for programming.

Figure 2.2 shows an example of such an SC-0 program, which is equivalent to the

program in Figure 2.3.

8

Some features of C such as -> operators, for constructs, and while constructs are

not supported in SC-0 because they can be realized by simple transformation over S-

expressions. The SC-1 language, which is implemented as an SC translator into SC-0,

features them.

The following sections describe the specification of the SC-1 language. The semantics

is explained by showing equivalent C code fragments. See Appendix A for the complete

syntax of SC-1.

2.2.1 Expressions

Table 2.1 shows examples of SC-1 expressions and C expressions equivalent to them.

Arithmetic expressions and assignments are written in Lisp-like syntax using operators

corresponding to ones of C. A list whose first element is not any keyword is evaluated as a

function call. For conditional expressions, the keyword if-exp is used. (The keyword if

cannot be used here, because expressions are distinguished from statements unlike Lisp.)

The keyword mref is used for indirection and ptr for getting addresses. Like in Scheme,

aref (array reference) is used for array subscripting, and fref (field reference) is used

to get a member of structures or unions. Sizeof-expressions are written using sizeof

operators. Cast-expressions need cast keywords unlike in C, to distinguish them from

function calls explicitly. A “compound literal” of C99 [21] also can be written in SC-1

using the keyword init.

2.2.2 Statements

Table 2.2 illustrates SC-1 statements. Labeled-, selection-, iteration- and jump-statements

are written like special forms of Scheme with corresponding keywords. A compound-

statement is written as a list beginning with begin. An empty list () is evaluated as a

null statement. The concept of statement-expressions is the same as in C.

2.2.3 Type expressions and type definitions

In SC-1, a type is expressed by a type expression. SC-1 provides the keywords which

correspond to any basic types of C. The basic types expressed by multiple tokens

9

Table 2.1: SC-1 expressions.

C SC-1
x = 3+4*5 (= x (+ 3 (* 4 5)))
f(x, y[3][4], s->a.b) (f x (aref y 3 4) (fref s -> a b))
x -= (int)(\&b) / *c (-= x (/ (cast int (ptr b)) (mref c)))
(0<n && n<10)?a:b (if-exp (and (< 0 n) (< n 10)) a b)
sizeof (a) (sizeof a)
sizeof (int) (sizeof int)
(funarray[3])(a, b) ((aref funarray 3) a b)
(struct sab){x, y} (a compound literal) (init (struct sab) (struct x y))

Table 2.2: SC-1 statements.

C SC-1
L1: goto L2; (label L1 (goto L2))
; (a null-statement) ()
switch (n) { (switch n
case 1: f(n); break; (case 1) (f n) (break)
case 2: g(n); break; (case 2) (g n) (break)
default: break; (default) (break))

}
for (i=0 ; i<=n ; i++) { (for ((= i 0) (<= i n) (inc i))
if (x<i) (if (< x i)

{ x++; y++; } (begin (inc x) (inc y))
else return i; (return i))
while (x<y) x*=2; (while (< x y) (*= x 2)))

}

10

such as unsigned int are also expressed by a single symbol such as unsigned-int

in SC-1. The syntaxes for enumerated, struct and union types are (enum identifier),

(struct identifier) and (union identifier) respectively.

For pointer types, the keyword ptr is used. For example, (ptr int) is the type of

pointers to int values. The syntax for array types is

(array element-type size1 . . . sizen),

where element-type is a type expression and each size is a constant expression. Sizes are

omitted for an array of unknown size (the size is determined by the initializer list). The

syntax for function types is

(fn return-type argument-type1 . . . argument-typen va-argopt),

where return-type and argument-types are type expressions. Va-arg corresponds to an

ellipsis (, ...) in C, which is used for functions which take variable arguments.

Any type expressions can be qualified by type qualifiers—const, volatile or

restrict—in the following manner:

(type-qualifier . . . type-expression).

For example, (array (const int) 5) is the type for arrays whose elements cannot be

modified.

A type definition is written using the keyword deftype as follows:

(deftype identifier type-expression).

SC-1 provides the separate syntax for type definitions while using a storage class specifier

typedef in an ordinary declaration means a type definition in C.

Note that a single type expression includes complete information of a type. This

is different from C in which type information is written separately in some cases. For

example, a variable declaration of an array of int values is

int a[5];

where the element type and the array declarator are written separately. Its equivalent

declaration of SC-1 is

(def a (array int 5)).

Such notation is more readable and easier to analyze. For an extreme example,

typedef void *(*(*gg_t)(void *(*) (int, int))) (int, int);

is much less readable than

11

(deftype gg-t (ptr (fn (ptr (fn (ptr void) int int))

(ptr (fn (ptr void) int int))))).

2.2.4 Declarations

The syntax for variable declarations/definitions is

(storage-class-specifier identifier type-expression initializeropt).

A function definition/declaration is

(storage-class-specifier (function-name parameter-name1 . . . parameter-namen)

(fn return-type argument-type1 . . . argument-typen va-argopt)

block-item . . .)

in most cases. Function-name and parameter-names are identifiers. Argument-typek

(1 < k < n) specifies the type of parameter-namek. Each block-item is a statement or a

declaration/definition. Storage-class-specifier is a keyword which specifies a storage class

(static, extern or auto) of the variable/function. The keyword def is also provided,

which corresponds to omitting a storage-class specifier in C. In addition, the keywords

decl, static-decl, extern-decl and auto-decl are provided, which are equivalent

to def, static, extern and auto respectively except that the formers can be used for

prototype declarations.

Initializer in a variable definition is an expression or a compound initializer for ini-

tializing an array or a struct. A compound initializer is a list which consists of array or

struct and following initializers.

Table 2.3 illustrates SC-1 declarations/definitions and equivalent ones in C.

2.2.5 Definitions of enumerations, structs and unions

Enumeration constants are defined with the keyword def, an enum specifier which con-

sists of an enum and an identifier, and following enumerators. Each enumerator is an

identifier or a list of an identifier and a constant expression. The latter corresponds to

an enumerator with = of C.

The structure of a struct/union is defined with a def or a decl, a struct/union

specifier which consists of a struct/union and an identifier, and following member

12

Table 2.3: SC-1 declarations/definitions of variables/functions.

C SC-1
int x; (def x int)
extern y; (extern int y;) (extern y int)
static long z=x+1; (static z long (+ x 1))
unsigned int a[]={1,2,3}; (def a (array unsigned-int) (array 1 2 3))
struct sab s={10,20}; (def s (struct sab) (struct 10 20))
int f(char x) { return x*x; } (def (f x) (fn int char) (return (* x x)))
void f(void) {} (def (f) (fn int void))
void f(void); (decl (f) (fn int void))
extern void f(void); (extern-decl (f) (fn int void))

declarations. A bit-field can be specified by a :bit and a constant expression following

a member declaration. The difference between def and decl is same as in a function

declarations/definitions.

Unlike C, we cannot define an enumeration/struct/union and variables whose type

is the being defined enumeration/struct/union at the same time. Therefore, an enumera-

tion/struct/union cannot be unnamed in SC-1 because such an enumeration/struct/union

is useless. By way of exception, we can use an unnamed enumeration/struct/union for

a type definition as follows:

(deftype identifier enum enumerator . . .)

(deftype identifier struct-or-union member-declaration . . .).

Table 2.4 illustrates SC-1 declarations/definitions of enumerations, structs and unions.

2.3 SC Preprocessors

SC preprocessors handle the following SC preprocessing directives, most of which corre-

spond to the directives for the C preprocessor, to transform SC programs:

• (%include file-name)

corresponds to an #include directive in C. The file file-name is included.

13

Table 2.4: SC-1 declarations/definitions of enumerations, structs and unions.

C SC-1
enum animal {CAT, DOG, OTHER=99}; (def (enum animal) CAT DOG (OTHER 99))
struct sab { (def (struct sab)
int a; (def a int)
long b; (def b long))

};
union byte { (def (struct s-n12)
unsigned char n; (def n1 int) :bit 4
struct { (def n2 int) :bit 4)
int n1:4; (def (union byte)
int n2:4; (def n unsigned-char)

} n12; (def n12 (struct s-n12)))
}
typedef struct { (deftype name-t struct
char str[20]; (def str (array char 20))

} name_t;
struct emp; (decl (struct emp))
struct emp{}; (def (struct emp))

• (%defmacro macro-name lambda-list S-expression1 . . . S-expressionn)

evaluated as a defmacro form of Common Lisp to define an SC macro. After

the definition, every list in the form of (macro-name . . .) is replaced with the

result of the application of Common Lisp’s macroexpand-1 function to the list.

The algorithm to expand nested macro applications complies with the standard C

specification.

• (%defconstant macro-name S-expression)

defines an SC macro in the same way as a %defmacro directive, except that every

symbol which eqs macro-name is replaced with S-expression after the definition.

• (%undef macro-name)

undefines the specified macro defined by %defmacros or %defconstants.

• (%ifdef symbol list1 list2)

14

(%ifndef symbol list1 list2)

If the macro specified by symbol is defined, list1 is spliced there. Otherwise list2 is

spliced.

• (%if S-expression list1 list2)

S-expression is macro-expanded, and then the result is evaluated by Common Lisp.

If the return value eqls nil or 0, list2 is spliced there. Otherwise list1 is spliced.

• (%error string)

interrupts the compilation with an error message string .

• (%cinclude file-name)

file-name specifies a C header file. The C code is compiled into SC-0 and the result

is spliced there. The SC programmers can use library functions and most of macros

such as printf and NULL declared/#defined in C header files. The detail of this

mechanism is discussed in Chapter 5.

2.4 SC Translators and Transformation Rules

A preprocessed SC program is analyzed and transformed into another SC program by an

SC translator. Each transformation phase in Figure 2.1 is governed as a transformation

rule-set, which is defined by some parameters and transformation rules. Each transfor-

mation rule is defined by pairs of a sequence of patterns and an action corresponding to

it which is defined by Common Lisp forms, and the defined rule can be called as a Lisp

function.

Rule-sets organize a hierarchical structure like classes of object oriented languages.

That is, we can define a rule-set by extending pre-existing rule-sets.

The following sections show how to define and apply transformation rule(-set)s.

2.4.1 Defining rule-sets

The syntax for defining a rule-set is as follows:

(define-ruleset rule-set-name (parent-rule-set-name . . .)

15

(parameter-name1 default-value1)

. . .

(parameter-namen default-valuen)).

The rule-set-name specifies a name of the being defined rule-set. The rule-set extends

zero or more rule-sets specified by parent-rule-set-name. The extended rule-set inherits

the all rules and the all parameters from the parent rule-sets. Parameters, specified

with parameter-name and default-value, can be referred to by rules which belong to the

rule-set with the ruleset-param function.

In particular, parameters with the following names have special meanings.

• entry: The value must be a symbol and it specifies a rule which is called at the

beginning when the rule-set is applied.

• default-input-handler: The value must be a function with one argument. This

function is called if no pattern matches when a rule is applied.

2.4.2 Defining rules

Then we need to define transformation rules which belong to the rule-set:

(defrule rule-name rule-set-name

((#?pattern11 . . . #?pattern1m1) form-list1)

. . .

((#?patternn1 . . . #?patternnmn) form-listn)

[(otherwise form-listotherwise)]

).1

When a rule is applied, the parameter is tested whether it is matched by any of pattern

in the following order: pattern11, . . . pattern1m1 , pattern21, . . . pattern2m1 , . . . patternn1,

. . . patternnmn . The form list form-listi is evaluated (by a Lisp evaluator) when the

argument is matched by patternik. If no pattern matches the parameter, form-listotherwise

is evaluated if exists, otherwise the function default-input-handler of the rule-set

rule-set-name is called (the parameter is passed to the function).

1 Parentheses enclosing (a) pattern(s) can be omitted where mi = 1.

16

We can define a rule using keyword extendrule instead of defrule. Extendrule has

the same syntax and semantics as defrule except that the rule rule-name of a parent

rule-set is applied when no pattern matches and no otherwise clause is given. In the

case where a rule-set has multiple parent rule-sets, the applying order is determined by

the “class precedence list” of CLOS (Common Lisp Object System) [42].

2.4.3 Patterns

We specify patterns using notations similar to backquote macros. More precisely, pattern

is an S-expression consisted of one of the following elements:

(1) symbol

matches a symbol that is eq to symbol .

(2) ,symbol

matches any element.

(3) ,@symbol

matches zero or more any elements.

(4) ,symbol[function]

matches an element if the evaluation result of (funcall #’function element) is

non-nil.

(5) ,@symbol[function]

matches zero or more elements if the evaluation result of (every #’function list) is

non-nil, where list is a list of the elements.

Function can be what is defined as a transformation rule or an ordinary Common Lisp

function (a built-in function or what is defined separately from transformation rules). A

lambda special form can be written directly as a function.

In evaluating a form list in a defrule (extendrule) body, variable x is bound to the

whole S-expression of the parameter and, in all the cases except (1), symbol is bound to

the matched part of the S-expression. In addition, the get-retval function can be used

17

to get an actual return value of function in (4) and (5) by passing the corresponding

symbol , and the call-next-rule function can be used to call the applying rule of the

next rule-set (like call-next-method of CLOS).

2.4.4 Applying rule-sets

A defined rule-set (transformation phase) can be applied using the function apply-ruleset:

(apply-ruleset input :rule-set-name).

The apply-ruleset receives additional keyword parameters corresponding to parameter-

names, which change values of rule-set parameters. Here shows an example:

(apply-ruleset ~(* a b) :sc0-to-sc0 :entry ’expression).

This function applies the expression rule of the specified rule-set sc0-to-sc0 to input .2

In processing apply-ruleset, dynamic variable *current-ruleset* which stands for

the current rule-set is dynamically bound to the specified rule-set.

2.4.5 Applying rules

A rule defined with defrule or extendrule can be called as a function which takes

one required argument and optional ones: the required one is an input for the rule, and

the optional ones can specify a rule-set name and values of its parameters to supersede

defaults. If a rule-set name is given explicitly, the rule of the specified rule-set is applied

to the input and the current rule-set is bound to the specified rule-set. Otherwise, the

rule of the current rule-set is applied.

As described above, we can refer to parameters of a rule-set with the ruleset-param

function. This function takes the symbol of a parameter name and returns the value of

the parameter of the current rule-set.

2.4.6 Example

Figure 2.4 shows an example of definitions of transformation rule-sets. A character

‘~’ in this figure is a macro character which works as if it were a backquote, except

that symbols in the following expression are interned to a distinguished package for

2 The input can be a string or a pathname which specifies a SC source file.

18

(define-ruleset sc0-to-sc0 ()
(entry ’sc-program)
(default-input-handler #’no-match-error))

(defrule sc-program sc0-to-sc0
(#?(,@decl-list)
(mapcar #’declaration decl-list)))

(defrule declaration sc0-to-sc0
(#?(,scs[storage-class-specifier] ;function definitions

(,@id-list[identifier]) (fn ,@tlist) ,@body)
~(,scs (,@id-list) ,(third x) ,@(block body))))

...)
(defrule sc-block sc0-to-sc0

(#?(,@bi-list)
(mapcar #’block-item-list bi-list)))

(defrule block-item sc0-to-sc0
((#?,bi[declaration]

#?,bi[statement])
(get-retval ’bi))

)
(defrule statement sc0-to-sc0

(#?(do-while ,exp ,@body)
~(do-while ,(expression exp)

,@(mapcar #’block-item body)))
...
(otherwise (expression x)) ;expression-statements
)

...

(define-ruleset sc1-to-sc0 (sc0-to-sc0))
(extendrule statement sc1-to-sc0

(#?(let (,@decl-list) ,@body)
~(begin ,@(sc-block (nconc (mapcar #’(lambda (x) (cons ~def x)) decl-list)

body))))
(#?(while ,exp ,@body)
(let ((cdt (expression exp)))

~(if ,cdt
(do-while ,cdt ,@(sc-block body)))))

((#?(for (,@list ,exp2 ,exp3) ,@body))
(let ((e1-list (mapcar #’block-item list))

(e2 (expression exp2))
(e3 (expression exp3))
(new-body (sc-block body)))

~(begin
,@e1-list
(if ,e2

(do-while (exps ,e3 ,e2)
,@new-body))))

)
((#?(loop ,@body))
~(do-while 1 ,@(sc-block body)))

)

Figure 2.4: Transformation rule-sets.

19

SC code instead of the current package (*package*) 3. Two rule-sets are defined in

this figure. The sc0-to-sc0 rule-set defines an identical transformer from SC-0 to SC-0.

The sc1-to-sc0 rule-set defines a transformation from the SC-1 language to SC-0. SC-1

features several constructs for iteration and bindings added to SC-0.

Suppose that the form

(statement ~(do-while x (while y (++ z))) :sc1-to-sc0)

is evaluated. This evaluation is progressed as follows:

1. The statement rule of sc1-to-sc0 is applied to the given input; no pattern

matches.

2. The statement rule of sc0-to-sc0 is applied; the pattern #?(do-while . . .)

matches.

3. Because the expression rule of sc1-to-sc0 is not defined, the expression rule

of sc0-to-sc0 is applied to x; x is returned. (the expression rule is snipped in

the figure.)

4. Because the block-item rule of sc1-to-sc0 is not defined, the block-item rule

of sc0-to-sc0 is applied to (while y (++ z)), and then the statement rule of

sc1-to-sc0 is applied; (if y (do-while y (++ z))) is returned.

5. (do-while x (if y (do-while y (++ z)))) is returned.

Since the current rule-set varies according to context, the rule of the current rule-set

also varies. For example, when

(statement ~(do-while x (while y (++ z))) :sc0-to-sc0)

is evaluated, the statement rule of sc0-to-sc0 is applied to (while . . .) and

no-match-error occurs.

20

(defmacro define-ruleset (name parents &body parameters)
‘(defclass ,(ruleset-class-symbol name)

,(or (mapcar #’ruleset-class-symbol parents)
(list *base-ruleset-class-name*))

,(loop for (p v) in parameters
collect ‘(,p :initform ,v

:initarg ,p))))

(defun apply-rule (input ruleset &rest initargs)
(let ((*current-ruleset*

(apply #’make-instance ruleset initargs)))
(funcall (rule-function

(slot-value *current-ruleset* ’entry))
(if (or (stringp input)

(pathnamep input))
(sc-file:read-sc-file input)
input))))

(defun rulemethod-args (ruleset)
‘(x (,*ruleset-arg* ,(ruleset-class-symbol ruleset))))

(defmacro defrule (name ruleset &body pats-act-list)
‘(progn

(defmethod ,(rule-method-symbol name)
,(rulemethod-args ruleset)

(block ,name
(case-match x
,@pats-act-list
(otherwise ;(call-next-method) in extendrule.
(call-otherwise-default x ’,ruleset)))))

(defun ,(rule-function-symbol name)
(x &optional (ruleset *current-ruleset* r)

&rest initargs)
(if r

(let ((*current-ruleset*
(apply #’make-instance ruleset initargs)

(,(rule-method-symbol name) x *current-ruleset*))
(,(rule-method-symbol name) x *current-ruleset*)))))

Figure 2.5: Implementation code for defining rule-sets.

2.5 Implementation

The rule-set definition facility is implemented using CLOS. Figure 2.5 shows (simplified)

implementation code for define-ruleset, defrule, extendrule and apply-ruleset.

Roughly speaking, define-ruleset and defrule (or extendrule) correspond to

defclass and defmethod respectively so that we can dispatch an appropriate rule for

the being applied rule-set.

In addition, the dynamic variable *current-ruleset* is used to remember the being

applied rule-set and each function to which a rule name is bound wraps the actual method

call with the value of this dynamic variable. As a result, we need not to write the trivial

3 Though the keyword package is generally used for treating shared symbols across multiple packages,
we employed this notation to avoid writing a preamble ‘:’ for every symbol.

21

rule-set argument in the definitions.

The SC compiler is also implemented as a transformation rule-set, which speci-

fies transformation from S-expressions as an SC-0 program to a string (instead of S-

expressions) as a C program.

22

Chapter 3

Evaluation and Discussion

3.1 Implementation Cost for Language Extension

To evaluate implementation cost using our system, we actually implemented a simple

language extension to SC-0 and Cilk [10], and compared the implementation costs. Cilk,

an extended C language with fine-grained multi-threading, is implemented by source-to-

source translation. In this evaluation, we implemented the extension by modifying the

translator.

3.1.1 The extended language for evaluation

For evaluation, we implemented labeled-breaks/continues as an extension. Figure 3.1

and Figure 3.2 show program examples of extended SC-0 and Cilk respectively. In the

case of Figure 3.2, the labeled break statement break L1 breaks out of the outer and

the inner do-while loop immediately, and the labeled continue statement continue L1

breaks out of the inner loop and iterate on the outer loop.

3.1.2 Implementation strategy

Labeled-breaks/continues can be implemented by translating them into goto state-

ments and putting additional labels before and after the labeled-statement. For example,

the program in Figure 3.2 is translated to the program in Figure 3.3. (The program in

Figure 3.1 is also translated in the same manner.)

23

(def (f x) (fn int int)
(label L1
(do-while (> x 0)

(do-while (<= x 10)
(inc x)
(if (< x 5)

(continue L1)
(break L1))

(= x (g x)))
(= x (h x))))

(return x))

Figure 3.1: A labeled break/continue
(in SC-0).

int f(int x)
{
L1:
do{

do{
x++;
if(x>5) continue L1;
else break L1;

x = g(x);
} while (x <= 10);
x = h(x);

} while (x > 0);
return x;

}

Figure 3.2: A labeled break/continue
(in Cilk).

int
f (int x)
{
L1:
do{

do{
x++;
if (x < 5) goto L12;
else goto L13;

x = g (x);
} while (x <= 10);
x = h (x);
L12: ;

} while (x > 0);
L13: ;
return x;

}

Figure 3.3: Implementation of labeled break and continue statements in C.

24

(defvar *label-list*)
(define-ruleset labeled-break (sc0-to-sc0))

(defrule sc-program labeled-break
(#?(,@declaration-list)
(let ((*label-list* ’()))
(call-next-rule))))

(defrule statement labeled-break
((#?(label ,id (do-while ,exp ,@body))
#?(label ,id (switch ,exp ,@body)))
(let ((*label-list* (cons (list id (generate-id "cont")

(generate-id "break"))
label-list)))

~(begin (label ,id
(,(car (third x)) ,exp ,@(sc-block body)
(label ,(second (first *label-list*)) nil)))

(label ,(third (first *label-list*)) nil))))
((#?(continue ,id)
#?(break ,id))
(let ((label-tuple

(car (member id *label-list* :key #’first))))
(unless label-tuple

(error "label ~s is undefined." id))
~(goto ,(funcall (case (car x)

((continue) #’second)
((break) #’third))

label-tuple)))))

Figure 3.4: The transformation rule for labeled break and continue statements.

3.1.3 Comparison of the implementation costs

We implemented the extension to SC-0 by the transformation rule-set shown in Figure 3.4.

The same extension to Cilk was implemented by modifying the original Cilk-to-C

translator, which first translates source code into an AST (Abstract Syntax Tree), applies

analysis and transformation to it, and then generates C code. We had to not only modify

the code for AST transformation, but also define an additional structure for AST and

modify the parser (.yacc files).

The comparison of implementation costs based on the number of the modified lines

and files is shown in Table 3.1. We had to modify more lines and files for Cilk. The

number of modified files for Cilk indicates that the changes of syntax required modifying

the multiple components of the translator. The cost for finding out all code fragments

25

Table 3.1: Comparison of implementation costs for labeled breaks and continues.
of files # of lines

SC 1 45
Cilk 9 112

which should be modified is considerable.

3.2 Discussion

In the earlier version of the SC system, the definition of transformation rules which

correspond to Figure 2.4 can be written as in Figure 3.5. All the rules were at the same

level and the concept of “rule-set” did not exist explicitly. (Though we used this term,

which simply indicated a group of rules which was related to one transformation phase.)

Therefore we had to write rules for the whole syntax, even if an extended language has

only several new constructs.

3.2.1 Extensibility of rule-sets

In the current version, existing rule-sets can be extended to define a new rule-set. In

Figure 2.4, the sc1-to-sc0 rule-set is defined by extending sc0-to-sc0, which is a rule-

set for identical transformation. By using sc0-to-sc0 as a common template, many

transformation rule-sets can be defined only by describing the difference.

Extending rule-sets is also helpful when we use a commonly-used rule-set as part of

the entire transformation. For instance, when we implement high-level services, we divide

the entire transformation into several phases. Indeed, when we implemented MT-SC, SC-

0 with multi-threading (Section 4.6.2), we used the type-info rule-set (Section 4.4.3)

to add type information to all expressions. In this case we cannot use the original

type-info rule-set as it is, but we can easily extend it for MT-SC (See Figure 3.6). In

a similar manner, we can easily reuse the type-info rule-set for implementing other

extended languages by writing a small amount of additional code.

In addition, extending rule-sets is also helpful when we want to use multiple extensions

26

(sc0-program (,@decl-list))
-> (mapcar #’declaration decl-list)))
(sc0-declaration (,scs[storage-class-specifier]

(,@id-list[identifier]) (fn ,@tlist) ,@body))
-> ~(,scs (,@id-list) ,(third x)

,@(mapcar #’block-item body)))
...
(sc0-block-item ,bi[declaration])
(sc0-block-item ,bi[statement])
-> (get-retval ’bi)

(sc0-statement (do-while ,exp ,@body))
-> ~(do-while ,(expression exp)

,@(mapcar #’block-item body)))
...
(sc0-statement ,otherwise)
-> (expression x)
...

(sc1-program (,@decl-list)) -> ...
(sc1-declaration (,scs[storage-class-specifier] ...)) -> ...
(sc1-block-item ,bi[declaration])
(sc1-block-item ,bi[statement]) -> ...

(sc1-statement (do-while ,exp ,@body)) -> ...
...
(sc1-statement (let (,@decl-list) ,@body))
-> ~(begin ,@(mapcar #’declaration decl-list)

,@(mapcar #’block-item body))
(sc1-statement (while ,exp ,@body))
-> (let ((cdt (expression exp)))

~(if ,cdt
(do-while ,cdt ,@(mapcar #’block-item body))))

(sc1-statement (for (,@list ,exp2 ,exp3) ,@body))
-> (let ((e1-list (mapcar #’block-item list))

(e2 (expression exp2))
(e3 (expression exp3))
(new-body (mapcar #’block-item body)))

(list ~(begin
,@e1-list
(if ,e2

(do-while (exps ,e3 ,e2)
,@new-body)))))

(sc1-statement (loop ,@body))
-> ~(do-while 1 ,@(function-body body))

Figure 3.5: The earlier version of transformation rules.

at the same time. Suppose we have already implemented extensions A and B, and we

want an extended language which features both of them. As Figure 3.7 shows, such an

implementation could be done by connecting two rule-sets serially one after another. If

we choose the left path, we must modify the rule-set for B to support new features added

in A. This modification can be done by the rule-set extension facility described above. We

can write the difference separately instead of rewriting the rule-set B. This scheme works

well if A is a relatively simple extension (e.g. new constructs for iteration). However

if both A and B are non-trivial extensions, extending a rule-set is not easy because the

27

type-info
(for MT-SC) multithread · · ·

MT-SC code

extend
type-info
(for SC-0)

MT-SC code (with type information)

Figure 3.6: A rule-set as part of the entire transformation.

SC-0 +A+B code

SC-0+B codeSC-0+A code

SC-0

extend

A+B → A A+B → B

A → SC-0 B → SC-0

Figure 3.7: Applying multiple rule-sets.

semantics for A+B is not straightforward.

Figure 3.8 shows code for extending the sc1-to-sc0 rule-set to fit MT-SC. Because

such differential code can be managed independently of base rule-sets, we can manage

rule-sets more clearly.

3.2.2 Ease of use

In the old version, we used to introduce more declarative notation for transformation

rules in consideration of other rule-based languages such as Prolog. Now transforma-

tion rules are described with ML-like notations for pattern-matching, mainly because of

implementation convenience. Some people may prefer the old syntax, but we think the

new one is more intuitive because rules look like BNF notations.

28

(define-ruleset multithread-sc1 (sc1-to-sc0))

(extendrule statement multithread-sc1
(#?(thread-create ,dec-list ,@body)
~(thread-create

,(mapcar #’declaration dec-list)
,@(mapcar #’block-item body)))

(#?(thread-suspend ,id[identifier] ,@body)
~(thread-suspend ,id ,@(mapcar #’block-item body)))

(#?(thread-resume ,exp)
~(thread-resume ,(expression exp)))

)

Figure 3.8: Extending the sc1-to-sc0 rule-set for MT-SC.

29

Chapter 4

Transformation-based
Implementation of Lightweight
Nested Functions

This chapter shows a practical example of implementation by language extension using

the SC language system. This extension is not just an example of language extension; it

extends the facility of the SC language system.

4.1 Introduction

The SC language system allows us to implement language extensions to C as code trans-

formation at low cost. The fact that C has low-level operations (e.g., pointer operations)

enables us to implement many flexible extensions using the SC language system. But

without taking “memory” addresses, C lacks an ability to access variables sleeping in

the execution stack, which is required to implement high-level services with “stack walk”

such as capturing a stack state for check-pointing and scanning roots for copying GC

(Garbage Collection).

A possible solution to this problem is to support nested functions. A nested function

is a function defined inside another function. Each function can manipulate its caller’s

local variables (or local variables of its indirect callers) sleeping in the execution stack

by indirectly calling a nested function of its (indirect) caller.

30

This chapter presents the implementation of an extended SC language, named LW-

SC (LightWeight SC), which features nested functions. Many high-level services with

“stack walk” mentioned above can be easily and elegantly implemented by using LW-SC

as an intermediate language. Moreover, such services can be efficiently implemented

because we design and implement LW-SC to provide “lightweight” nested functions by

aggressively reducing the costs of creating and maintaining nested functions. Though

the GNU C compiler [41] (GCC) also provides nested functions as an extension to C, our

elaborated translator to standard C is more portable and efficient for occasional “stack

walk”.

Note that, though this chapter presents an implementation using the SC language

system, our technique is not limited to it.

4.2 Language Specification of LW-SC

LW-SC has the following features as extensions to SC-1.

• Nested function types:

(lightweight return-type argument-type1 . . . argument-typen va-argopt)

is added to the syntax for type expressions.

• Calling nested functions: In function-call expressions, (expression ...), the

type of the first expression can be a nested function pointer type in addition to an

ordinary function pointer type.

• Defining nested functions: Nested functions can be defined with the following

form:

(storage-class-specifier (function-name parameter-name1 . . . parameter-namen)

(lightweight return-type argument-type1 . . . argument-typen va-argopt)

block-item . . .)

Note that this form is similar to that of ordinary function definitions. The only dif-

ference is that we use lightweight rather than fn for nested functions. Although

ordinary functions can be defined at the top level, nested function can be defined

wherever non-top-level variable definitions can appear.

31

(def (h i g) (fn int int (ptr (lightweight int int)))
(return (g (g i))))

(def (foo a) (fn int int)
(def x int 0)
(def y int 0)
(def (g1 b) (lightweight int int)

(inc x)
(return (+ a b)))

(= y (h 10 g1))
(return (+ x y)))

(def (main) (fn int)
(return (foo 1))

Figure 4.1: A LW-SC program.

A nested function can access the lexically-scoped variables in the creation-time en-

vironment and a pointer to it can be used as a function pointer to call the closure.

Figure 4.1 shows an LW-SC program. When h indirectly calls the nested function g1, it

can access the parameter a and the local variables x, y sleeping in foo’s frame.

4.3 GCC’s Implementation of Nested Functions

GCC also features nested functions and the specification of nested functions in LW-SC

is almost the same as the one of GCC. Unlike closure objects in modern languages such

as Lisp and ML, nested functions of both GCC and LW-SC are valid only when the

function frame of the enclosing function still remains on the stack. In addition, unlike

GCC, pointers to nested functions of LW-SC are not compatible with those to top-level

functions.1 However, such limitations are insignificant for the purpose of implementing

most of high-level services with “stack walk” mentioned in Section 4.1.

GCC’s implementation of nested functions causes high maintenance/creation costs

for the following reasons:

• The cost of initializing a nested function is high. When initializing a nested func-

tion, GCC uses a technique called trampolines [3] in order to obtain the address

1 That is, a variable of a nested function pointer type cannot be assigned to any top-level function
pointer (and vice versa).

32

of the function. Trampolines are code fragments generated on the stack at run-

time. It is used to enter the nested function with a necessary environment. The

cost of runtime code generation is high, and for some processors like SPARC, it is

necessary to flush an instruction cache for the runtime-generated trampoline code.

• Local variables and parameters of a function generally may be assigned to registers

if the function has no nested function. But an owner function of GCC’s nested

functions must keep the values of these variables in the stack since the nested

functions may also access them. Thus, the owner function must perform memory

operations to access these variables, which means that the cost of maintaining

nested functions is high.

LW-SC reduces the first cost by translating the nested function to a lazily-initialized pair

(on the explicit stack) of the ordinary function pointer and the frame pointer, and the

second cost by saving the local variables to the “explicit stack” lazily (only on calls to

nested functions), as is shown in the next section.

4.4 Implementation of LW-SC

We implemented LW-SC described above by using the SC language system, that is, by

writing transformation rules for translation into SC-0, which is finally translated into C.

4.4.1 Basic ideas

The basic ideas to implement nested functions by translation are summarized as follows:

• After transformation, all definitions of nested functions are moved to be top-level

definitions.

• To enable the nested functions to access local variables of their owner functions,

an explicit stack is employed in C other than the (implicit) execution stack for C.

The explicit stack mirrors values of local variables in the execution stack, and is

referred to when local variables of the owner functions are accessed.

33

• To reduce costs of creating and maintaining nested functions, operations to fix

inconsistency between two stacks are delayed until nested functions are actually

invoked.

Function calls/returns and function definitions in LW-SC should be appropriately

transformed based on these ideas.

4.4.2 Transformation strategy

LW-SC programs are translated in the following way to realize the ideas described in

Section 4.4.1.

(a) Each generated C program employs an explicit stack mentioned above on memory.

This shows a logical execution stack, which manages local variables, callee frame

pointers, arguments, return values of nested functions (of LW-SC) and return ad-

dresses.

(b) Each function call to an ordinary top-level function in LW-SC is transformed to the

same function call in C, except that a special argument is added which saves the

stack pointer to the explicit stack. The callee first initializes its frame pointer with

the stack pointer, moves the stack pointer by its frame size, then executes its body.

(c) Each nested function definition in LW-SC is moved to the top-level in C. Instead, a

value of a structure type, which contains the pointer to the moved nested function

and the frame pointer of the owner function, is stored on the explicit stack. Note

that initialization of the structure is delayed until nested functions are invoked to

reduce costs of creating nested functions.

(d) Each function call to a nested function in LW-SC is translated into the following

steps.

1. Push arguments passed to the nested function and the pointer to the structure

mentioned above in (c) to the explicit stack.

34

2. Save the values of the all local variables and parameters, and an integer corre-

sponding to the current execution point (return address) into the explicit stack,

then return from the function.

3. Iterate Step 2 until control is returned to main. The values of local variables and

parameters of main are also stored to the explicit stack.

4. Referring to the structure which is pointed to by the pointer pushed at Step 1

(the one in (c)), call the nested function whose definition has been moved to the

top-level in C. The callee first obtains its arguments by popping the values pushed

at Step 1, then executes its body.

5. Before returning from the nested function, push the return value to the explicit

stack.

6. Reconstruct the execution stack by restoring the local variables, the parameters,

and the execution points, with the values saved in the explicit stack at Step 3

(the values may be changed during the call to the nested function), to return to

(resume) the caller of the nested function.

7. If necessary, get the return value of the nested function pushed at Step 5 by

popping the explicit stack.

Note that a callee (a nested function) can access the local variables of its owner

functions through the frame pointers contained in the structure that have been saved

at Step 1.

For example, Figure 4.2 shows the state transition of the two stacks2, in the case of

Figure 4.1, from the beginning of the execution until the end of the first indirect call to

a nested function g1 (Each number in the figure corresponds to the step of the nested

function call described in (d)). Notice that the correct values of the local variables are

saved in the explicit stack during the execution of the nested function and otherwise in

the C stack.

2 “The C stack” here just states the set of local variables and parameters, whose values are stored
not only in the stack memory but also in registers.

35

explicit stack

main main main main

foofoo

main main

foo

h

foo

h

main main

foo

h

foo

h

main

foo

h

main

main

foo

h

main

g1

g1

main

foo

h

main

main

foo

h

main main

foo

h

main

foo

h

g1

: The stack memory that contains correct values of local variables.
: The structure that contains a pointer to function g1(moved to the top level) and a pointer to foo’s frame.

: The return value of g1.

1. 2., 3. 4.(Start g1)

5., 6. 7.

Executing main Executing foo Just before g1

explicit stack explicit stack

explicit stack explicit stack explicit stack

explicit stack explicit stack explicit stack

C stack C stack C stack

C stack C stack C stack

C stack C stack C stack

: The arguments to g1 and the pointer to the above structure.

g1 g1

4.(Executing g1)

get the argument

return value

Figure 4.2: Details of an indirect call to the nested function g1 in Figure 4.1.

4.4.3 Transformation rule-sets

To implement the transformation described above, we wrote transformation rules. The

entire transformation is divided into the following five phases (rule-sets) for simplicity

36

and reusability of each phase.

(1) The lw-sc1 rule-set: removes SC-1 extensions such as while statements by trans-

forming them into equivalent SC-0 code fragments.

(2) The lw-type rule-set: adds type information to all the expressions of an input

program.

(3) The lw-temp rule-set: transforms an input program in such a way that no function

call appears as a subexpression (except as a right hand side of an assignment).

(4) The lightweight rule-set: performs the transformation described in Section 4.4.2.

(5) The untype rule-set: removes the type information added by the type rule-set

from expressions to generate correct SC-0 code.

The details of these transformation rule-sets are presented below.

The lw-sc1 rule-set As described in Section 2.2, some features of SC-1, which are

also featured in LW-SC, are implemented by transformation into SC-0. The lw-sc1 rule-

set applies the same transformation to an LW-SC program, so to say, transforms it into

an “LW-SC-0” program. By applying such transformation at the beginning, following

rule-set can be written with fewer patterns.

We can write this rule-set easily by extending the sc1-to-sc0 rule-set which the SC

language system provides. All we have to write is:

(define-ruleset lw-sc1 (sc1-to-sc0))

(extendrule function-type lw-sc1

(#?(lightweight ,@t-exprs)

~(lightweight ,@(mapcar #’type-expression t-exprs))))

to enable the translator to accept type expressions in the additional syntax. 3

3Since function definitions in another function are syntactically correct in standard C [21], the original
sc1-to-sc0 translator also accepts them.

37

(def (g x) (fn int int)
(return (* x x)))

(def (f x) (fn double double)
(return (+ x x)))

(def (h x) (fn char double)
(return (f (g x))))

Figure 4.3: An example for the lw-type rule-set (before transformation).

(def (g x) (fn int int)
(return (the int

(* (the int x) (the int x)))))

(def (f x) (fn double double)
(return (the double

(+ (the double x) (the double x)))))

(def (h x) (fn char double)
(return (the double

(call (the (fn double double) f)
(the int (call (the (fn int int) g)

(the double x)))))))

Figure 4.4: An example for the lw-type rule-set (after transformation).

The lw-type rule-set Transformation by the temp rule-set and the lightweight

rule-set needs type information of all expressions. The lw-type rule-set adds such in-

formation. More concretely, it transforms each expression into (the type-expression

expression). In addition, this rule-set adds a call into each function-call expression for

convenience. For example, the program in Figure 4.3 is transformed to the program in

Figure 4.4 by this rule-set.

Figure 4.5 shows the (abbreviated) transformation rule-set. The lw-type rule-set is

defined by extending the type-info rule-set, which defines a transformer for SC-0. As

well as lw-sc1, lw-type is adjusted to LW-SC by extending the function-type rule.

The translator manages environments to save the information about defined variables,

structures, etc. using the dynamic variable *env*. The type:add-variable function

renews the environment and a new environment is created at begin statements etc. The

extended expression rule adds type information to expressions, referring to the dynamic

variable by the type:get-variable function.

38

(define-ruleset type-info (sc0-to-sc0))
(defrule declaration type-info

;; variable declarations/definitions
((#?(,scs[storage-class-specifier] ,id[#’atom] ,texp ,@init))
(let ((texp-ret (type-expression texp)))

(type:add-variable id texp-ret)
~(,scs ,id ,texp-ret ,@(mapcar #’initializer init))))

;; function declarations/definitions
(#?(,scs[storage-class-specifier] (,@id-list) ,ftype[function-type] ,@body)
(type:add-variable (first id-list) ~(ptr ,(get-retval ftype)))
(let ((*env* (type:make-environment *env*)))

(mapc #’type:add-variable (cdr id-list) (cddr (get-retval ftype)))
~(,scs (,@id-list) ,(get-retval ftype) ,@(sc-block body))))

...)

;;; Called in processing begin, do-while, etc.
(defrule sc-block type

(#?(,@bi-list)
(let ((*env* (type:make-environment *env*))) ; addition

(mapcar #’block-item bi-list))))

(defrule expression type-info
;; identifiers
(#?,id[identifier]
~(the ,(type:get-vartype id *env*) ,id))

;; constants
((#?,num[#’integerp])
~(the int ,num))

...
;; operators
(#?(,op[comparator] ,@expr-list)
~(the int (,op ,@(mapcar #’expression expr-list))))

(#?(,op[arithmetic-operator] ,@expr-list)
(let* ((t-exprs (mapcar #’expression expr-list))

(types (mapcar #’second t-exprs)))
~(the ,(reduce #’type-conversion types) (,op ,@t-exprs))))

(#?(ptr ,expr) ; the & operator
(let* ((t-expr (expression expr))

(tp (second t-expr)))
~(the (ptr ,tp) (ptr ,t-expr))))

...
;; function calls
(#?(,fexp[expression] ,@expr-list)
(let ((t-exprs (mapcar #’expression (cons fexp expr-list)))

(func-type (second (car t-exprs))))
~(the ,(return-type func-type)

(call ,@t-exprs)))))

;;;; extend the type rule-set
(define-ruleset lw-type (type-info))

;;; accept lightweight in addition to fn
(extendrule function-type lw-type

(#?(lightweight ,@t-exprs)
~(lightweight ,@(mapcar #’type-expression t-exprs))))

Figure 4.5: The lw-type rule-set (abbreviated).

39

(def (g x) (fn int int)
;; (return (+ (= x 3) (g x)))
(return (the int (+ (the int (= (the int x) (the int 3)))

(the int (call (the (fn int int) g)
(the int x)))))))

Figure 4.6: An example for the lw-temp rule-set (before transformation).

(def (g x) (fn int int)
(def tmp1 int)
(def tmp2 int)
;; (= tmp1 (= x 3))
(the int (= (the int tmp1)

(the int (= (the int x) (the int 3)))))
;; (= tmp2 (g x))
(the int (= (the int tmp2)

(the int (call (the (fn int int) g)
(the int x)))))

;; (return (+ tmp1 tmp2))
(return (the int (+ (the int tmp1) (the int tmp2)))))

Figure 4.7: An example for the lw-temp rule-set (after transformation).

The lw-temp rule-set A function call appearing as a subexpression such as (g x) in

(f (g x)) makes it difficult to add some operations just before/after the function call.

The lw-temp rule-set makes such function calls not appear. Because some temporary

variables are needed for the transformation of —lw-temp—, the definitions of those are

inserted at the head of the function body. For example, the program in Figure 4.6 is

transformed to the program in Figure 4.7 by this rule-set, where the definitions of tmp1

and tmp2 are added.

Figure 4.8 shows the (abbreviated) lw-temp rule-set. As well as lw-type, lw-temp

is defined by extending the temp rule-set, which is defined by further extending the

sc0t-to-sc0t rule-set. Sc0t-to-sc0t, which defines an identical transformer, is almost

the same as sc0-to-sc0 except that it accepts expressions with type information (in

the (the type-expression expression) syntax). This rule-set can be written easily by

extending sc0-to-sc0.

The actual transformation is performed by the expression rule, which returns an

expression as its return value and causes the following side-effects:

40

(define-ruleset temp (sc0t-to-sc0t))

(extendrule declaration temp
;; function declarations/definitions
(#?(,scs[storage-class-specifier] (,@id-list) ,ftype[function-type] ,@body)
(let* ((*additional-defs* ())

(new-body (sc-block body)))
~(,scs (,@id-list) ,ftype

,@*additional-defs* ,@new-body)))
...)

(defrule statement temp
;; Do-while needs to be transformed so that *additional-stmts*
;; are evaluated before each iteration even if after (continue).
(#?(do-while ,expr ,@body)
(let ((*preceding-stmts* ()))

(let ((expr-ret (expression expr))
(body-ret (sc-block body))
(end-label (generate-id "loop_end")))

~(begin
(do-while 1

,@*preceding-stmts*
(if (the int (not ,expr-ret)) (goto ,end-label))
,@body-ret)

(label ,end-label ())))))
;; expression-statements
(#?(the ,@rest)
(let ((*preceding-stmts* ()))

(let ((ret (expression x)))
~(begin ,@*preceding-stmts* ,ret))))

(otherwise
(let ((*preceding-stmts* ()))

(let ((ret (call-next-rule))) ;call statement of the parent rule-set.
~(begin ,@*preceding-stmts* ,ret))))

)

(defrule expression temp
...
;; function calls
(#?(the ,texpr (call (the ,ftexpr ,fexpr) ,@arg-list))
(let* ((the-fexpr ~(the ,ftexpr ,fexpr))

(exps-ret (mapcar #’expression (cons the-fexpr arg-list)))
(call-expr ~(the ,texpr (call ,@exps-ret))))

(if (void-p texpr)
(progn

(temp:add-precedent call-expr)
~(the int 0))

(let* ((tmp-id (generate-id "tmp")) ;make a fresh variable
(tmp-expr ~(the ,texpr ,tmp-id)))

(temp:add-variable tmp-id texpr)
(temp:add-precedent ~(the ,texpr (= ,tmp-expr ,call-expr)))
tmp-expr))))

...)

;;;; extend the type rule-set
(define-ruleset lw-temp (temp))

;;; accept lightweight in addition to fn
(extendrule function-type lw-temp

(#?(lightweight ,@t-exprs)
~(lightweight ,@(mapcar #’type-expression t-exprs))))

Figure 4.8: The lw-temp rule-set (abbreviated).

41

• adding the variable definitions to be inserted at the head of the current function

(such as (def tmp1 int) and (def tmp2 int) in Figure 4.6) to the dynamic vari-

able *additional-defs*, and

• adding the assignments to be inserted just before the expression ((= tmp1 (= x 3))

and (= tmp2 (g x))) to *preceding-stmts*.

The definitions saved in *additional-defs* are inserted by the declaration rule

and the assignments in *preceding-stmts* are inserted by the statement rule.

The lightweight rule-set Now the transformation described in Section 4.4.2 is re-

alized by the lightweight rule-set. Figure 4.9 shows the (abbreviated) lightweight

rule-set which is related to the transformation of “ordinary function” calls and “nested

function” calls. Esp appearing in the code is a special parameter which is added to

each function and keeps the stack top of the explicit stack. Efp is a special local vari-

able added to each function, which acts as the (explicit) frame pointer of the function.

Lwe-xfp transforms references to local variables into references to the explicit stack.

“Ordinary function” calls and “nested function” calls can be statically distinguished

with the functions’ types because ordinary function types are incompatible with lightweight

nested function types.

The transformation of each operation is detailed as follows (the rules unrelated to

function calls are omitted in the figure):

Calling ordinary functions: The function call is performed as a part of the condi-

tional expression of the while statement, where the stack pointer is passed to the

callee as an additional first argument. If the callee procedure normally finished, the

condition becomes false and the body of while loop is not executed. Otherwise, if

the callee returned for a “nested function” call, the condition becomes true. In the

body of the while loop, the values of local variables are saved to the explicit stack,

an integer that corresponds to the current execution point is also saved to the ex-

plicit stack ((fref efp -> call-id)), and then the current function temporarily

exits. This function is re-called for reconstructing the execution stack after the

execution of the nested function. Then the control is transferred to the label that

42

(define-ruleset lightweight (sc0t-to-sc0t))

;;;; Due to the lw-temp rule-set, a function call expression must be appeared in either of the following form
;;;; as a statement expression:
;;;; * (= variable function-call-expression)
;;;; * (= function-call-expression).
(defrule expression lightweight

;; ‘‘Ordinary function’’ calls
((#?(the ,texp0 (= (the ,texp1 ,id) (the ,texp (call (the (fn ,@texprs) ,exp-f) ,@exprs))))

#? (the ,texp (call (the (fn ,@texprs) ,exp-f) ,@exprs)))
(let* (...)

Adds local variable definitions etc.
~(begin

(= new-esp esp)
...
(while (and (== (= ,(Lwe-xfp ‘(the ,texp1 ,id))

(call ,fexp new-esp ,@(cdr tmpid-list)))
(special ,texp0))

(!= (= (fref efp -> tmp-esp) (mref-t (ptr char) esp))))
;; Save the values of local variables to the frame.
,@(make-frame-save *current-func*)
...
;; Save the current execution point.
(= (fref efp -> call-id)

,(length (finfo-label-list *current-func*)))
;; Return from the current function
;; (In main, call the nested function here instead of the following steps).
,(make-suspend-return *current-func*)
;; Continue the execution from here when reconstructing the execution stack.
(label ,(caar (push (cons (generate-id "L_call" *used-id-list*) nil)

(finfo-label-list *current-func*)))
nil)

;; Restore local variables from the explicit stack.
,@(make-frame-resume *current-func*)
...
(= new-esp (+ esp 1))))))

;; ‘‘Nested function’’ calls
((#?(the ,texp0 (= (the ,texp1 ,id) (the ,texp (call (the (lightweight ,@texprs) ,exp-f) ,@exprs))))

#? (the ,texp (call (the (lightweight ,@texprs) ,exp-f) ,@exprs)))
(let* (...)

Adds local variable definitions etc.
~(begin
...
(= argp (aligned-add esp (sizeof (ptr char))))
;; Push the arguments passed to the nested function
,@(mapcar (compose #’(lambda (x) ‘(push-arg ,(second x) ,(third x) argp))

#’Lwe-xfp)
(reverse exprs))

;; Push the structure object that corresponds to the frame of the nested function to the explicit stack.
(= (mref-t (ptr closure-t) argp) ,xfp-exp-f)
...
;; Save the values of local variables to the frame.
,@(make-frame-save *current-func*)
(= (fref efp -> argp) argp)
(= (fref efp -> tmp-esp) argp)
;; Save the current execution point.
(= (fref efp -> call-id)

,(length (finfo-label-list *current-func*)))
;; Return from the current function (In main, call the nested function here instead of the following steps).
,(make-suspend-return *current-func*)
;; Continue the execution from here after the function call finishes.
(label ,(caar (push (cons (generate-id "L_call" *used-id-list*) nil)

(finfo-label-list *current-func*)))
nil)

;; Restore local variables from the explicit stack.
,@(make-frame-resume *current-func*)
;; Get the return value (if necessary).
,@(when assign-p

‘((= ,(Lwe-xfp ‘(the ,texp1 ,id))
(mref-t ,texp1 (fref efp -> argp)))))))))

Figure 4.9: The lightweight rule-set (abbreviated).

43

is put next to the return by a goto statement which is added in the head of the

function. Then the values of local variables are restored form the explicit stack and

the function call in the conditional expression of the while statement is restarted.

The assignment (= new-esp (+ esp 1)) at the end of the while block sets a flag

at the LSB of the explicit stack pointer that indicates reconstructing the execution

stack.

Calling Nested functions: The arguments passed to the nested function and the clo-

sure structure (contains the nested function pointer and the frame pointer of its

owner function) are pushed to the explicit stack. Then, like an “ordinary function”

call, the values of local variables and the executing point are saved, the current

function exits, and the execution point is restored by goto after the procedures for

calling the nested function. Then the values of local variables are restored and the

return value of the nested function is taken from the top of the explicit stack, if

exists.

Returning from functions: Returns from ordinary function need no transformation.

On the other hand, returns from nested functions must be transformed to push

the return value to the explicit stack, and just to return 0 to indicate that the

execution of the function is normally finished.

Function definitions: The following steps are added before the functions’ body:

• initializing the frame pointer of the explicit stack (efp) and the stack pointer

(esp),

• judging whether reconstruction of the execution stack is required or not

and, if required, executing goto to the label corresponding to

(fref efp -> call-id), and

• popping parameters from the explicit stack, in the case of nested functions.

The transformation also involves adding the parameter esp that receives the ex-

plicit stack pointer, adding some local variable definitions, and adding the structure

44

(define-ruleset untype ()
(entry ’iter))

(defrule iter untype
((#?(the ,texp ,exp))
(iter exp))

((#?(call ,@exp-list))
(mapcar #’iter exp-list))

((#?(,@lst))
(mapcar #’iter lst))

(otherwise x))

Figure 4.10: The untype rule-set.

definition that represents the function’s frame in the explicit stack and is referred

to by efp.

The untype rule-set The output code transformed by the lightweight rule-set is

not valid SC-1 code because it contains type information. The untype rule-set removes

such information and generate valid SC-1 code. The rule-set is very simple; only needs

to search (the . . .) forms recursively and to remove the type information. Figure 4.10

shows the entire untype rule-set.

As an example of the total translation, Appendix B shows the entire SC-1 code

generated from the LW-SC program in Figure 4.1.

4.5 Evaluation

4.5.1 Creation and maintenance cost

To measure costs of creating and maintaining nested functions, we employed the following

programs with nested functions for several high-level services and compared them with

the corresponding plain C programs:

BinTree (copying GC) creates a binary search tree with 200,000 nodes, with a copying-

collected heap (Figure 4.11).

45

(deftype sht (ptr (lightweight void void)))
(def (randinsert scan0 this n)

(fn void sht (ptr Bintree) int)
(decl i int)
(decl k int)
(decl seed (array unsigned-short 3))
(def (scan1) (lightweight void void)

(= this (move this))
(scan0))

(= (aref seed 0) 3)
(= (aref seed 1) 4)
(= (aref seed 2) 5)
(for ((= i 0) (< i n) (inc i))
(= k (nrand48 seed))
(insert scan1 this k k)))

Figure 4.11: The LW-SC program for BinTree.

(deftype sht (ptr (lightweight void void)))
(def (bin2list scan0 x rest)

(fn (ptr Alist) sht (ptr Bintree) (ptr Alist))
(def a (ptr Alist) 0)
(def kv (ptr KVpair) 0)
(def (scan1) (lightweight void void)

(= x (move x))
(= rest (move rest))
(= a (move a))
(= kv (move kv))
(scan0))

(if (fref (mref x) right)
(= rest (bin2list scan1 (fref (mref x) right)

rest)))
(= kv (getmem scan1 (ptr KVpair_d)))
(= (fref (mref kv) key) (fref (mref x) key))
(= (fref (mref kv) val) (fref (mref x) val))
(= a (getmem scan1 (ptr Alist_d)))
(= (fref (mref a) kv) kv)
(= (fref (mref a) cdr) rest)
(= rest a)
(if (fref (mref x) left)

(= rest (bin2list scan1 (fref (mref x) left)
rest)))

(return rest))

Figure 4.12: The LW-SC program for Bin2List.

46

(def (cpfib save0 n)
(fn int (ptr (lightweight void)) int)

(def pc int 0)
(def s int 0)
(def (save1) (lightweight void)

(save0)
(save-pc pc)
(save-int s)
(save-int n))

(if (<= n 2)
(return 1)
(begin
(= pc 1)
(+= s (cpfib save1 (- n 1)))
(= pc 2)
(+= s (cpfib save1 (- n 2)))
(return s))))

Figure 4.13: The LW-SC program for fib(34).

Table 4.1: Performance measurements (for the creation and maintenance cost).

Elapsed Time in seconds
S:SPARC (relative time to plain C)
P:Pentium C GCC LW-SC XCC CL-SC
BinTree S 0.180 0.263 0.192 0.181 0.249
copying (1.00) (1.46) (1.07) (1.00) (1.38)

GC P 0.152 0.169 0.156 0.150 0.179
(1.00) (1.11) (1.03) (0.988) (1.18)

Bin2List S 0.292 0.326 0.303 0.289 0.318
copying (1.00) (1.12) (1.04) (0.99) (1.09)

GC P 0.144 0.145 0.151 0.146 0.154
(1.00) (1.01) (1.05) (1.01) (1.07)

fib(34) S 0.220 0.795 0.300 0.226 0.361
check- (1.00) (3.61) (1.36) (1.03) (1.64)

pointing P 0.0628 0.152 0.138 0.0751 0.162
(1.00) (2.42) (2.20) (1.20) (2.58)

nqueens(13) S 0.478 1.04 0.650 0.570 1.05
load (1.00) (2.18) (1.36) (1.19) (2.20)

balancing P 0.319 0.428 0.486 0.472 0.544
(1.00) (1.34) (1.52) (1.48) (1.71)

47

Bin2List (copying GC) converts a binary tree with 500,000 nodes into a linear list,

with a copying-collected heap (Figure 4.12).

fib(34) (check-pointing) calculates the 34th Fibonacci number recursively, with a ca-

pability of capturing a stack state for check-pointing (Figure 4.13).

nqueens(13) (load balancing) solves the N-queens problem (N=13) on a load-balancing

framework based on lazy partitioning of sequential programs [56, 57].

Note that nested functions are never invoked, that is, garbage collection, check-

pointing and task creation do not occur, in these measurements because we measured

the costs of creating and maintaining nested functions.

We measured the performance on 1.05 GHz UltraSPARC-III and 3GHz Pentium 4 us-

ing GCC with -O2 optimizers. Table 4.1 summarizes the results of performance measure-

ments, where “C” means the plain C program without high-level services, and “GCC”

means the use of GCC’s nested functions. The “XCC” means the use of XC-cube, which

is an extended C language with some primitives added for safe and efficient shared

memory programming [58]. XC-cube also features nested functions with lightweight

closures [56, 57], which are implemented at the assembly language level by modifying

GCC directly.4 The “CL-SC” (closure SC) means the use of nested functions with non-

lightweight closures, whose implementation is almost the same as LW-SC except that all

local variables and parameters are stored into the explicit stack.

Since nested functions are created frequently in fib(34), LW-SC shows good perfor-

mance on SPARC, compared to GCC where the cost of flushing instruction caches is

significant. On the other hand, LW-SC shows not so good performance on Pentium 4

where overhead with additional operations in LW-SC is emphasized.

Since several local variables can get callee-save registers in BinTree, LW-SC shows

good performance on SPARC, even if function calls (i.e. creations) are infrequent. This

effect is not so significant in fib(34) since there is few local variable accesses in the fib

function.

4 The detail of its implementation is reported by a separate paper [59].

48

Table 4.2: Performance measurements (for the invocation cost).

Elapsed Time in seconds
C GCC LW-SC XCC CL-SC

QSort SPARC 0.795 0.821 7.04 8.03 0.931
(200,000) (Ratio to C) (1.00) (1.03) (8.86) (10.1) (1.17)

Pentium 0.139 3.44 3.77 3.38 0.186
(Ratio to C) (1.00) (24.7) (27.1) (24.3) (1.33)

Bin2List SPARC — 0.495 0.522 0.495 0.526
copying (GC time) 0.278 0.296 0.279 0.302

GC Pentium — 0.248 0.257 0.249 0.259
(GC time) 0.0647 0.0685 0.0669 0.0714

LW-SC does not show good performance in nqueens(13) since unimportant variables

are allocated to registers. Since Pentium 4 has only a few callee-save registers and

performs explicit save/restore of callee-save registers which is implicit with SPARC’s

register window, the penalty of wrong allocation is serious.

XC-cube shows better performance than LW-SC mainly because it does not employ

some of additional operations in LW-SC, for example checking flags after returning from

ordinary functions and at the beginning of function bodies (by using assembly-level

techniques such as modifying return addresses). However, the difference is negligibly

small if the body of a function is sufficiently large.

CL-SC shows worse performance than LW-SC since all local variables and parameters

are stored in the explicit stack and they never get registers.

4.5.2 Invocation cost

To measure the cost of invoking nested functions, we employ the following programs:

QSort sorts 200,000 integers by the quick sort algorithm invoking a nested function as

a comparator, whose owner is the caller of the sorting function (Figure 4.15). In

the plain C program, the comparison function is defined as the ordinary function

where d is declared as a global variable.

49

0

10

20

30

40

50

60

70

0 20 40 60 80 100

E
la

ps
ed

 T
im

e
[s

ec
]

Depth of Execution Stack (# of calls)

C
GCC

LW-SC
XCC

CL-SC

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

E
la

ps
ed

 T
im

e
[s

ec
]

Depth of Execution Stack (# of calls)

C
GCC

LW-SC
XCC

CL-SC

UltraSPARC-III Pentium 4

Figure 4.14: Elapsed time in QSort against the number of intermediate function calls.

(def (mod-sort a n d)
(fn void (ptr int) int int)

(def (comp-mod pp pq)
(lightweight int (ptr void) (ptr void))

(return
(if-exp (< (% (mref (cast (ptr int) pp)) d)

(% (mref (cast (ptr int) pq)) d))
1

(if-exp (== (% (mref (cast (ptr int) pp)) d)
(% (mref (cast (ptr int) pq)) d))

0
-1))))

(quicksort a n (sizeof int) comp-mod))

Figure 4.15: The LW-SC program of QSort (calling the sorting function by passing a
nested function comp-mod as a comparator).

Bin2List (copying GC) works as the same as Bin2List in Section 4.5.1, except that

the garbage collector actually runs and nested functions are called for scanning

the stack (therefore there is no plain C program). The collectors employ a simple

breadth-first (non-recursive) copying GC algorithm.

Table 4.2 summarizes the results of performance measurements. In LW-SC, the in-

vocation cost is high because saving (restoring) the values in the execution stack are

necessary upon calling (returning from) nested functions, which causes bad performance

in QSort. What is worse is that the cost of invoking a nested function increases de-

pending on the depth of the execution stack at the time of the invocation. To show it

clearly, we invoked mod-sort in Figure 4.15 on top of various numbers of intermediating

50

function calls (Figure 4.14). The result shows the elapsed time increases proportionally

to the stack depth only in LW-SC. We think that the cost of throwing an exception to

an exception handler may also change with a similar reason.

CL-SC shows good performance in QSort because the unwinding and the reconstruct-

ing the execution stack are unnecessary.

Notice that GCC on Pentium shows bad performance in QSort. We guess that this is

because trampoline code placed in a writable data area (not a read-only program area)

prevents the processor from prefetching instructions.

All implementations show almost the same performances in Bin2List even when only

GC times are compared. This is because the invocation costs are negligible relative to

the other costs for GC (such as scanning heaps).

These results show that LW-SC works effectively if nested functions are not so fre-

quently called, and that CL-SC works better if they are called very often. Programmers

and compiler writers can choose one of these implementations depending on their situa-

tion.

4.6 Implementation of High-level Services

This section shows language extensions which we implemented by utilizing LW-SC as an

intermediate language. Chapter 6 shows a more significant example where dynamic load

balancing is realized by our novel strategy.

4.6.1 HSC—Copying GC

To implement garbage collection, the collector needs to be able to find all roots, each

of which holds a reference to an object in the garbage-collected heap. In C, a caller’s

pointer variable may hold an object reference, but it may be sleeping in the execution

stack until the return to the caller. Even when using direct stack manipulation, it is

difficult for the collector to distinguish roots from other elements in the stack.

By embedding garbage collection, we actually implemented HSC (High-level SC),

which is a memory safe SC-1 language with objects allocated in a garbage collected

heap.

51

Specification

To guarantee memory safety, we modified the specification of SC-1. In particular, HSC

uses “references” instead of pointers. Therefore,

• getting addresses of variables by ptr (& in C),

• arithmetic operations for references, and

• pointer casts

are not permitted in HSC. The other modifications are as follows:

• The syntax (new expression) is added to expression, which evaluates a given ex-

pression, allocate an object initialized to the result, and then returns a reference

to the object.

• An array type is not equivalent to any pointer types even if it appears as an

argument type.

• An array reference

(aref expression1 expression2)

is permitted only if the value of expression1 has an array type. It is no longer

equivalent to

(mref (+ expression1 expression2)).

• No union types exist. (From a practical viewpoint, disjoint unions should be

implemented instead.)

Figure 4.16 shows an example of an HSC program. In this figure,

(init Pair (struct e1 e2)) is an SC-0 expression which is equivalent to

(Pair){e1,e2} in C99 [21].

Implementation

Figure 4.17 partially shows how scanning of roots can be implemented by using nested

functions. Getmem allocates a new object in the heap and may invoke the copying collector

52

(def (struct sPair)
(def car (ptr Object))
(def cdr (ptr Object)))

(deftype Pair (struct sPair))

(def (make-pair e1 e2)
(fn (ptr Pair) (ptr Object) (ptr Object))

(def pair (ptr Pair) NULL)
(counter-on)
(= pair (new (init Pair (struct e1 e2))))
(counter-off)
(return pair))

Figure 4.16: An HSC program.

(deftype sht (ptr (lightweight void void)))

(def Pair-desc (struct descriptor)
(struct size map-array ...))

(def (make-pair scan0 e1 e2)
(fn (ptr Pair) sht (ptr Object) (ptr Object))

(def pair (ptr Pair) NULL)
(def (scan1) (lightweight void void)

(= e1 (evacuate e1)) (= e2 (evacuate e2))
(= pair (evacuate pair))
(scan0))

(counter-on scan1)
(= pair (getmem scan1 (ptr Pair-desc)))
(= (mref pair) (init Pair (struct e1 e2)))
(counter-off scan1)
(return pair))

Figure 4.17: Scanning stack implemented by nested functions in LW-SC.

with the nested function scan1. The copying collector can indirectly call scan1, which

effects the evacuation (copying) of objects by using roots (e1, e2 and pair) and indirectly

calls scan0 in a nested manner. The actual entity of scan0 may be another instance

of scan1 in the caller. The nested calls are performed until the bottom of the stack is

reached.

4.6.2 MT-SC—Multi-threading

We implemented an extended SC-1 language MT-SC involving features for multi-threading.

We used the implementation techniques which we proposed before in [45, 17].

53

(def (pfib n) (fn int int)
(def x int) (def y int)
(def nn int 0) (def c cont 0)
(if (<= n 1)

(return 1)
(begin
(thread-create

(= x (pfib (- n 1)))
(if (== (++ nn) 0)

(thread-resume c))) ; Resume the waiting thread.
(= y (pfib (- n 2)))
(if (< (-- nn) 0) ; Wait for synchronization.

(thread-suspend c0 (= c c0)))
(return (+ x y)))))

Figure 4.18: An MT-SC program.

Specification

By “threads,” we do not mean OS threads; we mean language-level threads. Each thread

of MT-SC is “active” or “suspended”. A thread is created by thread-create statement

in “active” state. The thread can suspend itself to become “suspended,” and at the

same time a continuation of the thread can be saved. Another thread can resume the

suspended thread by specifying the continuation. A thread is eliminated when it finishes

the given computation.

MT-SC has following primitives:

• (thread-create body) creates a new thread which executes body,

• (thread-suspend identifier body) binds the variable identifier to the current con-

tinuation, executes body to save the continuation, and then makes the current

thread suspended, and

• (thread-resume expression) resumes the suspended thread. The value of expres-

sion should be a continuation saved by thread-suspend.

Figure 4.18 shows an example of an MT-SC program.

Implementation

These features can be implemented using nested functions in LW-SC as shown in Figure 4.19.

Every function has its own nested function to continue its equivalent computation and

54

(decl (struct _thstelm))
(deftype cont (ptr (lightweight (ptr void) (ptr (struct _thstelm)) reason)))
(def (struct _thstelm)

(def c cont)
(def stat (enum t-stat)))

(deftype thst_ptr (ptr (struct _thstelm)))
(def thst (array (struct _thstelm) 4192)) ; a thread stack
(def thst_top thst_ptr thst) ; top of the thread stack

(def (pfib c_p n) (fn int cont int)
(def ln int 0)
(def x int) (def y int)
(def nn int 0) (def c thst_ptr 0) (def c0 thst_ptr)
(def tmp2 int) (def tmp1 int)

(def (pfib_c cp rsn) (lightweight (ptr void) thst_ptr reason)
(switch rsn

(case rsn_cont)
(switch ln

(case 1) (goto L1)
(case 2) (goto L2)
(case 3) (goto L3))

(return)
(case rsn_retval)
(switch ln

(case 2)
(return (cast (ptr void) (ptr tmp2))))

(return))
(return)
... Almost the same contents as the owner function ...
)

(if (<= n 2) (return 1)
(begin
;; push a current continuation to the thread stack
(begin

(= ln 1)
(= (fref thst_top -> c) pfib_c)
(= (fref thst_top -> stat) thr_new_runnable)
(inc thst_top))

;; the body of thread-create
(begin

(def ln int 0)
(def (nthr_c cp rsn) (lightweight (ptr void) thst_ptr reason)

...)
(= ln 1)
(= x (pfib nthr_c (- n 1)))
(inc nn)
(if (== nn 0) (thr_resume c)))

;; pop the thread stack
(if (!= (fref (- thst_top 1) -> stat)

thr_new_runnable)
(scheduling) ; call a scheduler
(dec thst_top))

;; (label L1) (in the nested function)
(= ln 2)
(= y (pfib pfib_c (- n 2)))
;; (label L2) (in the nested function)
(= nn (- nn 1))
(if (< nn 0)

(begin
;; suspend a current thread
(= c0 (inc thst_top))
(= (fref c0 -> c) pfib_c)
(= (fref c0 -> stat) thr_new_suspended)
(= c c0)
(= ln 3)
(scheduling))) ; call a scheduler

;; (label L3) (in the nested function)
(return (+ x y)))))

Figure 4.19: Multi-threading implemented by LW-SC.

55

saves the pointer of the nested function to be called later to early execute the thread’s

unprocessed computation (continuation). Such a nested function is also generated for

each thread-create.

A translated program also includes a scheduler function scheduling and a thread

stack. The thread stack holds a state and a continuation (a pointer of nested function)

corresponding to each thread. When the scheduler is called, it takes one of active threads

and resumes it by calling its nested function.

Our implementation does not need per-thread execution stacks, and nor heap memory

for storing thread frames.

4.7 Related Work

4.7.1 Compiler-based implementations of nested functions

As described above, GCC also features nested function but it is less portable and takes

high maintenance/creation costs. XC-cube implements nested functions with lightweight

closures by modifying the GCC compiler. It shows better performance, but it also lacks

portability.

4.7.2 Closure objects in modern languages

Many modern languages such as Lisp and ML implement closures as first class objects.

Those closure objects are valid after exit of their owner blocks. In most implementations

they require some runtime supports such as garbage collection, which makes it C too

inefficient to be used as an intermediate language to implement high-level languages.

4.7.3 Portable assembly languages

C-- [23, 35] also has an ability to access the variables sleeping in the execution stack by

using the C-- runtime interface to perform “stack walk.” We expect that its efficiency

is better than LW-SC, and almost equal to XC-cube. In terms of portability, LW-SC has

an advantage that we can use pre-existing C compilers.

56

4.7.4 High-level services

This section lists high-level services which are important applications of nested functions

and their implementation techniques in our work.

Garbage collection

As mentioned above, it is difficult to manipulate object references sleeping in the execu-

tion stack for garbage collection in C.

For this reason, conservative collectors [2] are usually used. Conservative copying

collectors can inspect the execution stack but cannot modify it. Accurate copying GC can

be performed by using translation techniques based on “structure and pointer” [14, 16],

but it takes higher maintenance costs.

Capturing/Restoring stack state

Porch [43] is a translator that transforms C programs into C programs supporting

portable checkpoints. Portable checkpoints capture the state of a computation in a

machine-independent format that allows the transfer of computations across binary in-

compatible machines. They introduce source-to-source compilation techniques for gener-

ating code to save and recover from such portable checkpoints automatically. To save the

stack state, the program repeatedly returns and legitimately saves the parameters/local

variables until the bottom of the stack is reached. During restoring, this process is

reversed. Similar techniques can be used to implement migration and first-class contin-

uations.

As shown in Figure 4.13, the stack state can be captured without returning to the

callers using nested functions. It uses similar techniques with the ones for scanning roots

described above.

Multi-threads: latency hiding

Concert [33], OPA [49] use similar translation techniques to support suspension and

resumption of multiple threads on a single processor with a single execution stack (e.g.,

for latency hiding). They create a new child thread as an ordinary function call and if

57

the child thread completes its execution without being blocked, the child thread simply

returns the control to the parent thread. But in case of the suspension of the child

thread, the C functions for the child thread legitimately saves its (live) parameters/local

variables into heap-allocated frames and simply returns the control to the parent thread.

When a suspended thread become runnable, it may legitimately restore necessary values

from the heap-allocated frames.

The library implementation of StackThreads [48] provides special two service routines:

switch_to_parent to save the context (state) of the child thread and transfer the control

to the parent thread, and restart_thread to restore the context and transfer the control

to the restarted thread. These routines are implemented in assembly languages by paying

special attention to the treatment of callee-save registers.

StackThreads/MP [47] allows the frame pointer to walk the execution stack inde-

pendently of the stack pointer. When the child thread is blocked, it can transfer the

control to an arbitrary ancestor thread without copying the stack frames to heap. Stack-

Threads/MP employs the unmodified GNU C compiler and implements non-standard

control-flows by a combination of an assembly language postprocessor and runtime li-

braries.

Lazy Threads [11] employ a similar but different approach to frame management and

thread suspension. Frames are allocated in “stacklet,” which is a small stack for several

frames. A blocked child thread returns the control to the parent without copying the

stack frame to heap. When the parent is not at top of the stacklet, it first allocates a

new stacklet for allocating a stack frame. Lazy Threads are implemented by modifying

the GNU C compiler.

Load balancing

To realize efficient dynamic load balancing by transferring tasks among computing re-

sources in fine-grained parallel computing such as search problems, load balancing schemes

which lazily create and extract a task by splitting the present running task, such as Lazy

Task Creation (LTC) [30], are effective. In LTC, a newly created thread is directly and

immediately executed like a usual call while (the continuation of) the oldest thread in

the computing resource may be stolen by other idle computing resources. Usually, the

58

idle computing resource (thief) randomly selects another computing resource (victim)

for stealing a task.

Compilers (translators) for multi-threaded languages generate low-level code. In the

original LTC [30], assembly code is generated to directly manipulate the execution stack.

Both translators for Cilk [10] and OPA [49] generate C code. Since it is illegal and not

portable for C code to directly access the execution stack, the Cilk and OPA translators

generate two versions (fast/slow) of code; the fast version code saves values of live vari-

ables in a heap-allocated frame upon call (in the case of Cilk) or return (in the case of

OPA) so that the slow version code can continue the rest of computation based on the

heap-allocated saved continuation.

A message passing implementation [7] of LTC employs a polling method where the

victim detects a task request sent by the thief and returns a new task created by splitting

the present running task. This technique enables OPA [49], StackThreads/MP [47] and

Lazy Threads [11] to support load balancing.

We restructure LTC with backtracking, where callers’ variables are accessed by using

nested functions for infrequent task creation [56, 57]. See Chapter 6 for more detail.

59

Chapter 5

Using Existing C Header Files in SC
Based on Translation from C to SC

This chapter introduces C2SC Compiler, a translator from C to SC-1. This translator

allows SC programmers to include existing C header files (.h files) as translated SC

header files by using the %cinclude directive which is provided by SC preprocessors (see

Section 2.3).

We first discuss the necessity of the translator in the next section, and then detail its

implementation.

5.1 Why We Need Translation from C to SC

As we mentioned in Section 2.1, SC languages are designed not only as data structures

of ASTs but also for human programming. Because SC-1 has the same semantics as C,

existing functions defined in C should be able to be used in SC-1. But in order to use

a C function, its declaration needs to be written in SC-1. Thus a “reverse” translator is

required.

Note that the reverse translator is not required in the case where we just write a

program in SC-1 (or SC-0), because the SC compiler (and also rule-set for SC-1-to-SC-

0 transformation) does not perform any semantic analysis such as type checking. For

example, the SC-1 statement multiplies a pointer and a floating point number, which

causes a data type mismatch error:

60

(begin (def x double 3.14159)

(def p (ptr int))

(return (* p (sin x))))

But the SC compiler translates the code into C without any type checking:

{ double x=3.14159;

int *p;

return p * sin(x); }

This strategy is reasonable because we can resign such type checking to the back-end C

compiler. All the SC compiler needs to do is add

#include <math.h>

at the head of the output C code. But this strategy is not sufficient when language

extension is applied. For example, the temp rule-set, used to implement LW-SC in

Section 4.4.2, translates

(= y (f (sin x) (cos x)))

into

(= tmp1 (sin x))

(= tmp2 (cos x))

(= y (f tmp1 tmp2)),

and the additional variable definitions of tmp1 and tmp2 need to be inserted before these

expressions. The definitions require the types of these variables, that is, the return types

of sin and cos which can be obtained only by looking up the header file math.h.

Another purpose of C2SC Compiler is to allow us to use macros defined by #define

directives in C header files, which include object-like macros such as NULL, stdin and

stdout and function-like macros such as putchar and getchar.

61

SC preprocessor

C2SC Preprocessor C2SC Translator

C code

preprocessed code

SC-0 code(%cinclude file-name)

C2SC Compiler

Figure 5.1: Translation flow in C2SC Compiler.

5.2 Implementation

5.2.1 Overview

Figure 5.1 shows the translation flow in C2SC Compiler. The SC preprocessor in this

figure corresponds to the one in Figure 2.1. The %cinclude directive tells the SC prepro-

cessor to call C2SC Compiler with a given file name as an input. Then C2SC Compiler

translates C code in the file into SC-1 code and the result replaces the %cinclude ex-

pression.

The translation of C2SC Compiler consists of two phases; the first phase is performed

by C2SC Preprocessor and the second phase is by C2SC Translator.

C2SC Preprocessor

C2SC Preprocessor, which we implemented by modifying an existing C preprocessor

(MCPP [29]), translates input C code as follows.

Step 1 applies the translation corresponding to a normal C preprocessor, which includes

• including files specified by #include directives,

• expanding macros defined by #define directives and predefined macros,

and

62

• invalidation of code fragments delimited by #ifdef and #ifndef and #if,

Step 2 translates each #define and #undef into an intermediate expression in the fol-

lowing manner:

#define identifier repl-list

−→ (%defconstant-cexp identifier string)

#define identifier(identifier-list) repl-list

−→ (%defmacro-cexp identifier (identifier-list) string)

#undef identifier −→ (%undef identifier).

The result is saved separately from the result of Step 1. Here, string is a

Lisp string corresponding to the code fragment, which is obtained by macro-

expanding repl-list in the macro definition environment after the whole header

file is processed.

The results of Step 2, the translated macro definitions, are inserted after Step 1

in order to prevent the SC preprocessor, which is called after C2SC Compiler, from

re-macroexpanding the translated code.

Macro-expanding repl-list into string does not comply the standard specification of

the C preprocessor [20]. Its necessity and drawbacks are discussed in Section 5.3.2.

C2SC Translator

Following steps 1 and 2 of C2SC Preprocessor, C2SC Translator, which is implemented

in Common Lisp, translates the result of Step 1 and that of Step 2 into SC-1 code and

SC macro definitions, respectively, and output them in this order.

The result of Step 1, the preprocessed C code, is lexed, parsed and translated into

equivalent SC-1 code.

Each %defconstant-cexp/%defmacro-cexp, generated in Step 2, is translated into

a %defmacro/%defconstant directive for the SC preprocessor. The C code fragment

string in the %defconstant-cexp/%defmacro-cexp, is translated into an equivalent SC

code fragment if possible, and is used as the body of the SC macro definition. If the

translation is impossible, %defconstant-cexp/%defmacro-cexp is translated into

63

[Example 1]
#define apply_f(a) f(a)

[Example 2]
#define BEGIN {
#define END }
#define NOTOKEN

[Example 3]
#define concat_token(a,b) a ## b

[Example 4]
#define tp_cast(a) ((tp)(a))

Figure 5.2: C macros which are difficult to translate into SC macros.

(%defmacro identifier (identifier-list) ~(c-exp string ,@identifier-list)) or

(%defconstant identifier (c-exp string)).

C-exp is an additional primitive of SC-0/1. The SC compiler translates a c-exp ex-

pression with a single argument into string (a C code fragment) as it is. If the c-exp

expression has two or more arguments, the compiler replaces C identifiers in string which

corresponds to the macro parameters (identifier-list) with the second and the following

arguments of the c-exp. The translated macro can be used in SC, but cannot be analyzed

nor transformed by SC translators.

C2SC Translator performs no modification for %undefs. They are evaluated as %undef

directives by the SC preprocessor.

5.2.2 Translation of C macros into SC macros

Any preprocessed C code (result of Step 1 of C2SC Preprocessor) can be translated into

SC-1 straightforwardly, because SC-1 and C have the same semantics.

However, translating #defines for the C preprocessor into %defmacro/%defconstant

for the SC preprocessor is impossible in some cases. This is mainly because the repl-list

in a #define is a token sequence, not a parsing unit. We cannot always construct a

parse tree of the token sequence or, even if parsing is successful, the constructed parse

tree may not be unique. Because the expansion for an SC macro must be written as an

S-expression which roughly corresponds to a parse tree, a #define with such a token

64

sequence as the expansion cannot be translated into an SC macro. It is more difficult to

translate a C macro which takes parameters because they are also replaced to any token

sequences.

Figure 5.2 illustrates C macros which are difficult to translate into SC macros. Even

simple macros such as Example 1 can be used in two ways:

y = apply_f(x); −→ y = f(x);

long apply_f(int x); −→ long f(int x);.

The corresponding SC-1 code fragments are (= y (f x)) and (decl (f x)

(fn long int)) respectively. Thus, no SC macro corresponds to this C macro. More-

over, it is impossible to define an SC macro even only for the latter usage.

Example 2 shows C macros with token sequences of which we cannot construct parse

trees: no parsing unit corresponds to a single brace, and also to an empty token sequence.

The macro in Example 3 uses a ## operator, which concatenates two tokens into

a single token. Such token concatenation cannot be translated to any operation over

S-expressions.

The usage of the macro in Example 4 is not unique: it can be interpreted differently

depending on the compile-time environment. An application of this macro is as follows:

tp_cast(x); → ((tp)(x));.

The expanded code fragment is interpreted as a cast-expression to the type tp in an

environment where tp is defined as a type name by typedef ((cast tp x) in SC-

1). Otherwise, it is interpreted as a function call (e.g., (tp x) in SC-1). The SC

preprocessor cannot determine which expansion is correct because it does not perform

semantic analysis.

5.2.3 Countermeasures

As described above, translating C macro definitions into SC macro definitions is impos-

sible in some cases. But from a practical viewpoint, the examples above are not fatal in

most cases because of the following reasons:

• the macro in Example 1 is useless if this is defined for using in function declarations,

• the macros in Example 2 are also useless in S-expression based languages,

65

• token concatenation in Example 3 is commonly used for generating identifiers and

it can be translated by limiting its usage to generating an identifier (Lisp symbol)

from two atoms, and

• we seldom define a macro such as in Example 4 for the purpose of using the single

macro for both cast-expressions and function calls.

In this work, we implemented C2SC Translator based on these insights. The trans-

lation is performed as follows:

Step 1 tries parsing a given C code fragment assuming it can be parsed as a sequence of

declarations, a sequence of member declarations of a struct/union, a type name,

a statement, or an expression (these candidates correspond to the nonterminat-

ing symbols of BNF used for the C language definition [20]: translation-unit,

struct-declaration-list, type-name, statement and expression, respectively).

Step 2 gives up translation if the parsing fails for all the candidates. In this case, an

SC macro definition with a c-exp is output.

Step 3 if the parsing succeeded for only one candidate, translates the parsing tree into

an SC-1 code fragment.

Step 4 if the parsing succeeded for two or more candidates, prompts the user to choose

one of the translated results and outputs the choice.

In Step 1, a macro parameter in the code fragment is regarded as an identifier. For

example, in parsing the code fragment in the following macro definition,

#define X_OR_Y(x,y) ((x)||(y))

x and y are treated as identifiers. For this example, the parsing succeeds as an expression

and the SC macro definition

(%defmacro X_OR_Y (x y) ~(or ,x ,y))

will be output as a result. But the definition

66

#define X_OP_Y(op) (x op y)

in which op is expected to be replaced by an operator, cannot be translated because

(x op y) cannot be parsed as any of the parsing unit listed above since op is regarded

as an identifier. The transformation result is

(%defmacro X_OP_Y (op) ~(c-exp "(x op y)" ,op)).

A ## operator is translated into an application of the Lisp function which concatenates

two S-expressions into a Lisp symbol. For example, the macro definition in Example 3

in Figure 5.2 will be translated into

(%defmacro concat token (a b) (concat-symbol a b)),

where concat-symbol is the concatenation function. A # operator, which stringifies the

token after it, is also translated into an application of the Lisp function that stringifies

a given S-expression.

For a macro definition such as Example 4, the translator tries parsing for two cases

for each appearing identifier: when the identifier is defined as a type name and when it

is not defined. If the parsing succeeded for both cases, the translator adds the results to

the list of candidates from which the user chooses in Step 4.

To avoid prompting, the following pragmas for C2SC Compiler can be used.

• #pragma c2sc typename identifier

• #pragma c2sc not typename identifier

• #pragma c2sc query typename identifier

The identifier specified by c2sc_typename is assumed to be a type name in translating

the macro definitions that follow. The identifier specified by c2sc_not_typename is

assumed not to be a type name. The effects of these programs are canceled by the

c2sc_query_typename pragma.

For example, in translating the macro definition in Example 4, the translator prompts

the user with the following message to choose 1 or 2.

67

1: ~(cast tp ,a)

2: ~(tp ,a)

>>

This prompting can be avoided by putting

#pragma c2sc typename tp

before the #define directive (1 is automatically chosen).

5.3 Evaluation and Discussion

5.3.1 Translation results from the standard POSIX header files

To evaluate practicality of C2SC Compiler, we applied it to the C header files defined

in POSIX [19], listed in Table 5.1. We used the header files for GCC 3.4.2 on FreeBSD

5.3-STABLE. The header files which are not listed in Table 5.1 but included by nested

#include directives are also applied. We removed the code fragments with GCC exten-

sions such as attribute and extension from the header files. The verification

whether the translation is correct is performed by hand.

The result is as follows. The compiler translated all the C code correctly, except for

the macro definitions. Although most of the macro definitions are translated correctly,

some definitions failed to translate and some caused prompting. These definitions are

listed below.

• The macros that failed to translate

A macro definition without tokens such as

#define _STDIO_H

cannot be translated in our strategy, but they would not cause fatal problems be-

cause such a macro is only used in predicates of #ifdef and #ifndef etc. Figure 5.3

shows the macros that cannot be translated for the other reasons.1

The macros in group (1) failed to translate because each replacement consists only

of an operator, and the macros in (2) failed because each expects its parameter

1 The replacements shown in the macro definitions in Figure 5.3 and Figure 5.4 have been macro-
expanded by C2SC Preprocessor.

68

Table 5.1: The header files used for evaluation.

<aio.h> <arpa/inet.h> <assert.h>
<complex.h> <cpio.h> <ctype.h>
<dirent.h> <dlfcn.h> <errno.h>
<fcntl.h> <fenv.h> <float.h>
<fmtmsg.h> <fnmatch.h> <ftw.h>
<glob.h> <grp.h> <iconv.h>
<inttypes.h> <iso646.h> <langinfo.h>
<libgen.h> <limits.h> <locale.h>
<math.h> <monetary.h> <mqueue.h>
<ndbm.h> <net/if.h> <netdb.h>
<netinet/in.h> <netinet/tcp.h> <nl_types.h>
<poll.h> <pthread.h> <pwd.h>
<regex.h> <sched.h> <search.h>
<semaphore.h> <setjmp.h> <signal.h>
<spawn.h> <stdarg.h> <stdbool.h>
<stddef.h> <stdint.h> <stdio.h>
<stdlib.h> <string.h> <strings.h>
<stropts.h> <sys/ipc.h> <sys/mman.h>
<sys/msg.h> <sys/resource.h> <sys/select.h>
<sys/sem.h> <sys/shm.h> <sys/socket.h>
<sys/stat.h> <sys/statvfs.h> <sys/time.h>
<sys/timeb.h> <sys/times.h> <sys/types.h>
<sys/uio.h> <sys/un.h> <sys/utsname.h>
<sys/wait.h> <syslog.h> <tar.h>
<termios.h> <tgmath.h> <time.h>
<trace.h> <ucontext.h> <ulimit.h>
<unistd.h> <utime.h> <utmpx.h>
<wchar.h> <wctype.h> <wordexp.h>

to be a string literal which is expected to be concatenated with the surrounding

string literals to make a single string (the C preprocessor concatenates adjacent

string literals into a single one).

The macros in (3) are expected to be used for initializers of structs, and are typically

used in definitions like:

pthread_once_t once_control PTHREAD_ONCE_INIT;

This definition fails to be translated because it is not any of the parsing unit that

are tried in Step 1 in Section 5.2.3.

The macro in (4), where cmp is expected to be an operator, is the same kind of

macro as X_OP_Y in Figure 5.2. It cannot be translated because of the reason

described above.

69

(1)
<iso646.h>
#define and &&
#define and_eq &=
#define bitand &
#define bitor |
#define compl ~
#define not !
#define not_eq !=
#define or ||
#define or_eq |=
#define xor ^
#define xor_eq ^=

(2)
<sys/cdefs.h>
#define __COPYRIGHT(s) __asm__ (".ident\t\"" s "\"")
and 8 similar macros.

(3)
<pthread.h>
#define PTHREAD_ONCE_INIT {0, ((void *)0)}
2 similar macros in <netinet/in.h>,
6 similar macros in <netinet6/in6.h>, and
2 similar macros in <socket.h>.

(4)
<sys/time.h>
#define timercmp(tvp,uvp,cmp) \
(((tvp) -> tv_sec == (uvp) -> tv_sec) ? \
((tvp) -> tv_usec cmp (uvp) -> tv_usec) : \
((tvp) -> tv_sec cmp (uvp) -> tv_sec))

Figure 5.3: The macros that failed to be translated.

• The macros that caused prompting

Totally 52 macros caused prompting while they are translated. Figure 5.4 shows

only a few of them,1 but they cover all the reasons of the prompting.

The macros in (5) can be interpreted in two ways depending on whether an identifier

is defined as a type name. For example, isascii can be interpreted in the following

ways:

~(== (cast ,c (ptr (bit-not 0x7F))) 0)

~(== (bit-and ,c (bit-not 0x7F)) 0)

However, it seems to be expected that c is not a type name and that this macro

should be interpreted as the latter.

70

(5)
<sys/_sigset.h>
#define _SIG_IDX(sig) ((sig)-1)
#define _SIG_WORD(sig) (((sig)-1)>>5)
#define _SIG_BIT(sig) (1<<(((sig)-1)&31))

<sys/signal.h>
#define sigmask(m) (1<<((m)-1))

<sys/select.h>
#define _howmany(x,y) (((x)+((y)-1))/(y))

<sys/types.h>
#define minor(x) ((int)((x)&0xffff00ff))

<ctype.h>
#define isascii(c) (((c)&~0x7F)==0)
#define toascii(c) ((c)&0x7F)

(6)
<wctype.h>
#define WEOF ((wint_t)-1)

(7)
<sys/cdefs.h>
#define __offsetof(type,field) ((size_t)(&((type*)0)->field))
#define __rangeof(type,start,end) \

(((size_t)(&((type*)0)->end)) - \
((size_t)(&((type*)0)->start)))

<netinet/in.h>
#define IN_CLASSA(i) (((u_int32_t)(i)&0x80000000)==0)
#define IN_CLASSB(i) (((u_int32_t)(i)&0xc0000000)==0x80000000)

(8)
<stdio.h>
#define feof(p) \
(!__isthreaded? \
(((p)->_flags&0x0020)!=0):(feof)(p))

#define ferror(p) \
(!__isthreaded? \
(((p)->_flags&0x0040)!=0):(ferror)(p))

(9)
<sys/select.h>
#define FD_ZERO(p) do { \

fd_set *_p; \
__size_t _n; \
_p = (p); \
_n = (((1024U)+(((sizeof(__fd_mask)*8))-1)) \

/((sizeof(__fd_mask)*8))) \
while (_n > 0) \
_p->__fds_bits[--_n] = 0; \

} while (0)

Figure 5.4: The macros that caused prompting.

71

The WEOF macro in (6) can be interpreted in two ways:

~(cast wint_t (- 1))

~(- wint_t 1)

In this case, the former seems the right one since wint_t seems a type name.

The macros in (7) and (8) are the instances of Example 4 in Figure 5.2. For

example, the __offsetof macro can be interpreted in two ways:

~(cast size_t (ptr (fref (mref (cast (ptr ,type) 0)) ,field)))

~(size_t (ptr (fref (mref (cast (ptr ,type) 0)) ,field)))

It seems that the macros in (7) are interpreted as cast expressions and that the

macros in (8) as function calls.

In the FD_ZERO macro in (9), the code fragment fd_set *_p; causes prompting.

This is interpreted as a variable declaration

(decl _p (ptr fd_set))

if fd_set is a type name, and otherwise interpreted as a multiplicative expression

(* fd_set _p).

The former seems to be correct.

All of these prompting can be avoided by pragmas described in Section 5.2.3. In

addition, the translator can determine the interpretation for some of the macros in

(1) by the knowledge of the C language, e.g., the & operator cannot be applied to

a number literal.

As the result, C2SC Compiler is sufficiently practical; we can use all the C header

files except the macros listed in Figure 5.3. The macros in (1), (3) and (4) in this figure

also can be translated by changing the assumption, for example, by assuming a given

token sequence may be translated as an operator. We can provide features to allow a

programmer to modify the assumption by using annotation.

5.3.2 Safety of translation

Because the translation strategy described in the previous section is based on a certain

set of assumptions, it is not sure that C macros are translated correctly. Note that an

72

SC program is translated correctly as long as incorrectly-translated macros are not used

in the SC program. Using the macros in C does not cause any problems because they

are expanded by C2SC Preprocessor.

Therefore, macros which C2SC Translator gave up to translate do not cause any

problems other than that an SC programmer cannot use the macros, as long as the

translator informs the programmer of the fact. These macros are translated into SC

macros with c-exps, which the programmer can use if necessary. In particular, they are

valuable for using in predicates of %ifdef, %ifndef and %if directives.

A problem arises when macros are translated differently from their original intentions.

For example, the C macro

#define EQ_AB a=3, b=4

is translated into

(%defconstant EQ_AB (exps (= a 3) (= b 4))

by C2SC Translator, which seems to be correct. But this macro may be expected to be

used for defining enumeration types like this:

enum eabc { EQ_AB, c }; −→ enum eabc { a=3, b=4, c };

The SC code fragment

(def (enum eabc) EQ_AB c)

is macro-expanded into

(def (enum eabc) (exps (= a 3) (= b 4)) c),

which is syntactically incorrect;

(def (enum eabc) (a 3) (b 4) c)

is correct.

Such incorrect translation occurs when parsing for a code C fragment succeeded

accidentally even though the fragment is not any one of the candidates listed in Step

1 in Section 5.2.3; a sequence of declarations, a sequence of member declarations of a

struct/union, a type name, a statement, and an expression. As long as the macro is

intended to be used as any one of them, the macro can be used safely in SC.

However, the problem still remains in the case that the use of a macro causes nested

macro expansion. For example, the C macro definition in (1) in Figure 5.5 is translated

into the SC macro definition by C2SC Translator. When this macro is used, whether and

73

(1)
#define EXIT_IF_A(x) \
do { \

enum { EQ_AB, c } _t=(x); \
switch(_t) { \
case a: exit(1); } \

} while(0)

(2)
(%defmacro EXIT_IF_A (x)
~(do-while 0

(def _t (enum EQ_AB c) ,x)
(switch _t
(case a) (exit 1))))

(3)
#define EXIT_IF_A(x) \
do { \

enum { a=3, b=4, c } _t=(x); \
switch(_t) { \
case a: exit(1); } \

} while(0)

(4)
(%defmacro EXIT_IF_A (x)
~(do-while 0

(def _t (enum (a 3) (b 4) c) ,x)
(switch _t
(case a) (exit 1))))

Figure 5.5: Nested macro expansion.

how an expression such as EQ_AB is expanded depend on a macro definition environment

on its expansion [20]. EXIT_IF_A cannot be used safely if EQ_AB, defined above, is defined

as a C macro.

We solved this problem by making C2SC Preprocessor macro-expand the token se-

quence in a macro definition, as described in Section 5.2.1. Actually, the EXIT_IF_A

macro definition is translated by the preprocessor into the definition written in (3), then

translated by C2SC Translator into the SC macro definition written in (4), where the

original intention is not changed.

The header files used in our evaluation in Section 5.3.1 actually includes the macro

definitions

#define _IOC(inout,group,num,len) \

((unsigned long) \

74

(inout \

| ((len & IOCPARM_MASK) << 16) \

| ((group) << 8) | (num)))

#define _IOW(g,n,t) \

_IOC(IOC_IN, (g), (n), sizeof(t))

#define TIOCFLUSH _IOW(’t’, 16, int).

TIOCFLUSH can be translated correctly because _IOW and _IOC are macro-expanded in

advance by C2SC Preprocessor. (Note that _IOW(. . .) cannot be parsed as a function

call because its third argument is the type name int.)

This mechanism breaks the standard specification of the C preprocessor, as described

above. But this is not fatal because it only causes a loss of ability to modify how nested

expansion is performed when a macro defined in C is used, in an SC program.

Except for translation of macro definitions, C2SC Compiler can translates any C

code correctly. Thus we can use type information and functions2 defined in C header

files safely in a SC program.

5.3.3 Prompting by multiple candidates

As described in Section 5.2.3, C2SC Translator prompts a user if there are multiple

possible translations. To avoid such prompting, the translator can save all the candi-

dates temporarily; and then the appropriate translation is chosen later automatically,

depending on each compilation environment on expansion.

Such selection method must be defined in rule-sets for language extension, because

the SC preprocessor cannot perform any semantic analysis of SC programs. Thus we

must implement this mechanism carefully not to complicate the specification of rule-sets.

2 Actually, a C header file often includes function definitions with the inline attribute.

75

5.4 Related Work

5.4.1 Foreign function interfaces

There exist many implementations which allow us to call C functions from another

language. Such a mechanism is called Foreign Function Interface (FFI). For example,

GCC [41] allows us to call C functions from Fortran. GCC achieves this by generating

an external name for each function by the specified naming rule. We can use foreign

function call by defining and calling a function by names by the naming rule.

Some implementations of Common Lisp also provide FFI. CMU Common Lisp [27]

is one of such implementations. The C function defined by

void foo(int x){ . . . }

can be called from Common Lisp by evaluating the following form:

(alien-funcall (extern-alien "foo" (function void int))

10)

However, in the both cases, type information defined in header files cannot be used

in the foreign languages because C functions are loaded by linking object files, which do

not include such information any longer. Thus, a programmer need to write the type

of a calling function ((function void int) in the above Lisp example) and (s)he is

responsible for matching the number and the types of the function’s parameters to the

original definition.

Our translator takes in such type information automatically and outputs it as SC

declarations. We can also output the information as code of another language so that a

programmer of the language can call a C function without writing its type. It may be

possible to use C macros from another language in the case that the foreign language is

similar to C.

5.4.2 Including C header files in C++

We can include C header files in a C++ program using the #include directive for the

C++ preprocessor. The C++ compiler can compile most of C programs correctly with

76

little modification; all we have to do is enclose the C code in extern "C" {. . . } to

prevent external names from being modified.

This mechanism is similar to ours in that the both allow us to use C header files from

another language.

77

Chapter 6

Backtracking-based Load Balancing

6.1 Introduction

For efficient parallel computing, computations should be allocated so that every com-

puting resource—such as a core of a multi-core processor in a node of a cluster—has its

own work at any time. But it is often difficult to predict such appropriate allocations

statically especially in a heterogeneous environment or an environment where computing

resources can join and leave dynamically. Irregular applications, such as tree-recursive

algorithms and backtrack search algorithms, also make the prediction difficult.

Therefore dynamic load balancing is required, where a computation is dynamically

allocated to idle computing resources. For efficient dynamic load balancing, the compu-

tation should be divided into larger tasks to reduce the total sum of dividing/allocation

costs. It is also important to reduce management costs, which include costs of managing

data that are necessary for spawning a task.

This paper proposes a scheme, called backtracking-based load balancing, which re-

alizes these requirements. In our scheme, a worker basically performs a computation

sequentially, but when it receives a task request from another idle worker, it creates a

new task by dividing the remaining computation and returns the new task. In tree-

recursive computation, the spawned task can be larger, in general, if we use information

near the bottom of the execution stack. For this reason, the worker performs temporary

backtracking before creating the task.

78

Multithreaded languages, such as Cilk [10] and MultiLisp [13], are widely accepted

for parallel programming in shared memory environments. However, such languages

have some overheads compared to sequential languages. In sequential languages, a single

working space such as arrays is often reused for later computations; this common tech-

nique in sequential computing naturally improves spatial locality and achieves higher

performance. But in multithreaded languages, at least, logical threads are created as

potential tasks even when efficient LTC(Lazy Task Creation)[30]-based implementations

are employed. Such a logical thread cannot concurrently use the working space for the

parent thread. In our scheme, the worker basically does not create logical threads; rather

it spawns an actual task (a piece of work for an idle worker) only when it receives a task

request. On spawning a task, it performs necessary work-space allocations. In addition,

our scheme does not need to manage any queue of logical threads. Therefore quite low

overhead can be achieved.

We also propose a programming model in consideration of backtracking, which allows

programmers to write undo-redo operations to be executed in backtracking. This allows

fine-grained parallel programs for various backtrack search algorithms to be written

elegantly and run very efficiently because they can not only reuse a single working space

but also delay copying between working spaces by using backtracking.

In addition, we adopted message passing for communication among workers which

exchange tasks and results as serialized task objects. This allows a single program to run

in both shared and distributed (and also hybrid) memory environments with reasonable

efficiency and scalability.

We designed and implemented such a language as an extended C language with new

constructs.

6.2 Motivating Examples

We present two examples of tree-recursive fine-grained parallel computing; these appli-

cations are used to explain the details of our proposal in the following sections. They are

also used for performance measurements. The first example is to recursively compute

79

int fib (int n) {

if (n <= 2) return 1;
{
int s1, s2;
s1 = fib(n - 1);
s2 = fib(n - 2);
return s1 + s2;

}
}

Figure 6.1: A C program for Fibonacci.

int a[12]; // manage unused pieces
int b[70]; // board
const int ps[57][5] = {...};
// ps[i] represents the shape of the i-th (piece, direction)
const int pos[13] = {...};
// ps[i] for pos[p]<=i<pos[p+1] corresponds the shape for the p-th piece

// Try from the j0-th piece to the 12-th piece in a[].
// The i-th piece for i<j0 is already used.
// b[k] is the first empty cell in the board.
int search (int k, int j0)
{

int s=0; // the number of solutions
for (int p=j0; p<12; p++) { // iterate through unused pieces

int ap=a[p];
for (int i=pos[ap]; i<pos[ap+1] ; i++) {

// examine the ‘‘i-th’’ (piece, direction) at the first empty location ‘‘k’’
... local variable definitions ...
if (Can ps[i] be set into the board b?);
else continue;
Set the piece ps[i] into the board b and update a.
kk = the next empty cell;
if (no empty cell?) s++; // a solution found
else s += search (kk, j0+1); // proceed to the next piece
Remove the piece from b and restore a (backtracking).

}
}
return s;

}

Figure 6.2: A C program for Pentomino.

the n-th term of the Fibonacci sequence defined as follows:

fib(1) = fib(2) = 1

fib(n) = fib(n − 1) + fib(n − 2) for n > 2

Figure 6.1 shows a sequential C program for the n-th Fibonacci number. In each function

call, computations of fib(n − 1) and fib(n − 2) can be executed in parallel.

The second example is a search algorithm to find all possible solutions to the Pen-

tomino puzzle. A pentomino consists of five squares attached edge-to-edge. There are

80

// The structure of task objects.
struct tfib {

int n; // input
int r; // output

};
// The entry point of a task.
void exec_fib_task (struct tfib *pthis)
{ pthis->r = fib (pthis->n); }

int fib (int n) {
if (n <= 2) return 1;
{

int s1, s2;
if (choose not to spawn?) {

s1 = fib(n - 1);
s2 = fib(n - 2);

} else {
Allocate a working space of struct tfib as this.
this.n = n - 2; // put the input value
Send this as a newly spawned task.
s1 = fib(n - 1);
Wait and receive the result of this.
s2 = this.r; // get the output value
Deallocate this working space.

}
return s1 + s2;

}
}

Figure 6.3: A naively-parallelized program for Fibonacci.

twelve pentominos of different shapes. The Pentomino puzzle is to fill the 6×10 rectan-

gular board with the twelve pentominos. This problem represents many similar search

problems. Figure 6.2 shows a sequential C program for this problem. Each function

call iterates through unused pieces (the outermost loop) and their directions (the inner

loop). Parallelization seems applicable to the outermost loop. But there is an important

difference from Fibonacci that this program does backtrack search where states of the

board and the pieces are stored in working spaces: a piece is set at the next available

position by one-step extension and removed by backtracking.

A naive task-parallel program for Fibonacci can be written as in Figure 6.3. In fib(n),

each worker chooses whether it executes fib(n-2) by itself or it spawns a fib(n-2) task.

For efficient load balancing, each task should be as large as possible so that a minimum

sufficient number of tasks are created to keep all workers busy during the entire running

time. That is, for each task, its worker should choose to spawn a proper number of tasks

in the early stage and then choose not to spawn any more tasks except for adjusting the

completion time. Such a strategy is infeasible without using precise information on the

81

whole execution. Thus, this naive approach does not work.

Figure 6.4 shows a naive task-parallel program for Pentomino. For parallelization,

the outer for loop in Figure 6.2 is replaced with a PAR_LOOP macro. In PAR_LOOP, each

worker chooses whether it performs all iterations or it spawns a task for the upper half

of iterations. (In the latter case, it has another choice on the remaining lower half of

iterations with the PAR_LOOP macro recursively.) This naive approach does not work

since it requires an infeasible strategy as well.

In the following sections, we propose our approach with a feasible strategy for efficient

load balancing. Note that the worker that executes a spawned task often requires its

own initialized (copied) working space as in Figure 6.4. This motivated us to make an

additional innovation of our approach.

6.3 Our approach

We propose a programming and execution framework called “Tascell.” Tascell stands for

task cell, which indicates that running tasks are divided like biological cells. In Tascell,

we can spawn a task lazily by using backtracking.

The sequential computation of the C program in Figure 6.1 (Figure 6.2) is illustrated

as a depth-first, left-to-right traversal of the invocation tree in the upper part of Figure 6.5

(Figure 6.6). Notice that the naive parallel program in Figure 6.3 (Figure 6.4) involves

the same traversal if its worker always chooses not to spawn a task.

In Tascell, the worker always chooses not to spawn at first, but when it receives a

task request, it spawns a task as if it changed the past choice. That is, as is shown in

Figure 6.5,

1. it backtracks (goes back to the past),

2. it spawns a task (and changes the execution path to receive the result of the task),

3. it returns from the backtracking (restores the time), and

4. then it restarts its own task.

82

// The structure of task objects.
// Each worker has to have its own board for parallelization.
struct pentomino {

int s; // output
int k, i0, i1, i2;
int a[12]; // manage unused pieces
int b[70]; // board

};

exec_pentomino_task (struct pentomino *pthis)
{

pthis->s = search(pthis->k, pthis->i0, pthis->i1, pthis->i2, pthis);
}

const int ps[57][5] = {...}; // see Figure 6.2
const int pos[13] = {...}; // see Figure 6.2

#define PAR_LOOP (_i1, _i2, _body) {
if (choose not to spawn?) {

for(; _i1 < _i2; _i1++) _body
} else {

int _ih = (_i1 + _i2) / 2;
int i1 = _ih; // range for the new sub-task i1--i2
int i2 = _i2;
Allocate a working space of struct pentomino as this.
{ // put task inputs for upper half iterations
copy_piece_info (this.a, tsk->a); // copy the
copy_board (this.b, tsk->b); // working space
this.k = k; this.i0 = j0;
this.i1 = i1; this.i2 = i2;

}
Send this as a newly spawned task.
// lower half iterations (expanded n times for n-bit int)
PAR_LOOP (_i1, _ih, _body)
Wait and receive the result of this.
s += this.s; // get the result
Deallocate this working space.

}
}
// Try from the j1-th piece to the j2-th piece in a[].
// The i-th piece for i<j0 is already used.
// b[k] is the first empty cell in the board.
int search (int k, int j0, int j1, int j2, struct pentomino *tsk)
{

int s=0; // the number of solutions
int p=j1;
PAR_LOOP(p, j2, {

int ap=tsk->a[p];
for (int i=pos[ap]; i<pos[ap+1] ; i++) {

// examine the ‘‘i-th’’ (piece, direction)
... local variable definitions ...
if (Can ps[i] be set into the board tsk->b?);

else continue;
Set the piece ps[i] into the board tsk->b and update tsk->a.
kk = the next empty cell;
if (no empty cell?) s++; // a solution found
else // the next piece

s += search (kk, j0+1, j0+1, 12, tsk);
Remove the piece from tsk->b and restore tsk->a (backtracking).

}
})
return s;

}

Figure 6.4: A naively-parallelized program for Pentomino.

83

fib(40)

fib(39)

fib(38)

fib(38)

fib(37)

1. backtrack 2. spawn a task

3. return from
backtracking

4. restart

fib(37)

fib(38)

fib(39)
fib(38)

fib(40)

Figure 6.5: An task partitioning of a computation of fib(40) in Tascell; a new task for a
computation of fib(38) is spawned.

Notice that we can spawn a larger task (as is the fib(38) subtree in the lower right part

of Figure 6.5), in general, by backtracking to the oldest available choice point.

A Pentomino worker performs a sequential computation efficiently with its own work-

ing space by setting a piece and by removing the piece (i.e., backtracking or undoing)

across search steps. When the worker spawn a task, it must copy (part of) the “cur-

rent” contents of its working space into a newly allocated space for the new task as in

Figure 6.4. In our approach, the “current” contents should be equal to the past contents

at the time of the past choice. As is shown in Figure 6.6, the worker can recover the

past contents by performing proper undo operations along with backtracking as part of

Step 1, it spawns a task with a copy of its working space at Step 2, and then it performs

proper redo operations as part of Step 3 to restart its own task at Step 4.

Multithreaded languages such as Cilk [10] and MultiLisp [13] uses the technique called

84

.. ..

..

..

1. backtrack
removing pieces

2. make a copy of the board
and spawn a task

3. return from backtracking
setting the removed pieces

4. restart

a board copy

Figure 6.6: An task partitioning of Pentomino in Tascell; a new task for half iterations
in the first step is spawned.

Lazy Task Creation (LTC) [30] to reduce overheads for dynamic load balancing. Our

approach differs from LTC in the following points:

• Our worker performs a sequential computation unless it receives a task request.

Because no logical threads are created as potential tasks, the cost of managing a

queue for them can be eliminated.

• In multithreaded languages, each (logical) thread requires its own working space. In

contrast, our worker can reuse a single working space while it performs a sequential

computation to improve spatial locality and achieve higher performance.

• When we implement a backtrack search algorithm in multithreaded languages, each

thread often needs each its own copy of its parent thread’s working space. In con-

trast, our worker can delay copying between working spaces by using backtracking.

• Our approach supports (heterogeneous) distributed memory environments without

85

programmer

Tascell server

· · ·
tasktask-request

a Tascell program
compiler

result ACK

executable file

deploy

user

worker0

nodeworker1

worker2

node node
worker0

worker1 worker0

child n

child 1child 0

child 0
Tascell server

(a)(b)

Figure 6.7: A multi-stage overview of the Tascell framework.

using distributed shared memory systems.

6.4 Tascell Framework

We implemented the Tascell framework to realize our idea, which consists of the Tascell

server and the compiler for the Tascell language.

6.4.1 Overview

Figure 6.7 shows a multi-stage overview of the Tascell framework. Compiled Tascell

programs are executed on one or more computation nodes. Each computation node has

one or more worker(s) in the shared memory environment (the number can be specified

as a runtime option).

Workers can communicate with each other by message passing. For automatic load

86

// The definition of a task in Tascell
task tfib {

in: int n; // input
out: int r; // output

};
// The entry point of tfib.
// The task object this is declared implicitly.
task_exec tfib
{ this.r = fib (this.n); }

worker int fib (int n) {
if (n <= 2) return 1;
{

int s1, s2;
do_two // construct in Tascell

s1 = fib(n - 1);
s2 = fib(n - 2);

tfib { // The task object this is declared implicitly.
// put part (performed before sending a task)
{ this.n = n - 2; }
// get part (performed after receiving the result)
{ s2 = this.r; }

} // end of do_two
return s1 + s2;

}
}

Figure 6.8: A Tascell program for Fibonacci.

balancing, idle workers request tasks of busy workers. To relay a task request message

for another node, Tascell servers which received the task request guess a busy node and

pass the request to it, maybe via another server. Note that such a series of messages

are exchanged automatically; programmers need not (and cannot) treat each of them

directly.

Each task or its result is transmitted as a task object whose structure is defined

in a Tascell program. If a request is from the same node, the object can be passed

quickly via shared memory, otherwise it is transmitted as a serialized message via base

servers. Because the choice is determined automatically, programmers need not take care

of memory environments.

See Appendix C for the details of the message protocol in the Tascell framework.

87

task pentomino {
out: int s;
in: int k, i0, i1, i2;
in: int a[12]; // manage unused pieces
in: int b[70]; // board

};
task_exec pentomino {
this.r = search(this.k,this.i0,this.i1,this.i2,&this);
}

const int ps[57][5] = {...}; // see Figure 6.2
const int pos[13] = {...}; // see Figure 6.2

worker int search (int k, int j0, int j1, int j2, task pentomino *tsk) {
int s=0; // the number of solutions
// parallel for construct in Tascell
for (int p : j1, j2)

{
int ap=tsk->a[p];
for (int i=pos[ap]; i<pos[ap+1] ; i++) {
// examine the ‘‘i-th’’ (piece, direction)
... local variable definitions ...
if (Can ps[i] be set into the board tsk->b?);
else continue;
dynamic_wind // construct for specifying undo/redo operations
{ // do/redo operation for dynamic_wind

Set the piece ps[i] into the board tsk->b and update tsk->a.
}
{ // body for dynamic_wind

kk = the next empty cell;
if (no empty cell?) s++; // a solution found
else // the next piece

s += search (kk, j0+1, j0+1, 12, tsk);
}
{ // undo operation for dynamic_wind

Remove the piece from tsk->b and restore tsk->a (backtracking).
} // end of dynamic_wind

}
}

pentomino (i1, i2) { // Declaration of this and setting a range (i1--i2) is done implicitly
// put part (performed before sending a task)
{ // put task inputs for upper half iterations

copy_piece_info (this.a, tsk->a);
copy_board (this.b, tsk->b);
this.k=k; this.i0=j0; this.i1=i1; this.i2=i2;

}
// get part (performed after receiving the result)
{ s += this.s; }

} // end of parallel for
return s;

}

Figure 6.9: A Tascell Program for Pentomino.

88

6.4.2 Tascell Language

The Tascell language is an extended C language.1 Figures 6.8 and 6.9 are examples of

Tascell programs.

Programmers can write a worker program with new constructs in Tascell, starting

with an existing sequential program. Tascell has constructs for defining a task and for

specifying potential task division possibly with temporary undo/redo operations.

Task definition

A top-level task declaration:

task task-name { [in:|out:] struct-declaration · · · };

gives the structure of task-name task objects. For instance, “task tfib {in: int n;

out: int r};” in Figure 6.8 declares the structure of task tfib objects. The syntax

is the same as definitions of structs, except that we may specify an in: or out: at-

tribute for each field. A Tascell compiler uses attributes to construct default send/receive

methods of the task. In addition, we can add user-defined send/receive methods in order

to skip transmitting (part of) inputs/outputs selectively or allocating/freeing a working

space (the details are omitted in this paper due to space limitation).

Definitions of entry points A top level declaration

task_exec task-name { body }

defines the computation of a task-name task. In the body, we can refer to the task object

by the keyword this, which includes an input of the task in some fields, and we should

set the result of the computation into appropriate fields. For instance, “task_exec tfib

{this.r=fib(this.n);}” in Figure 6.8 assigns the result of fib(this.n) into this.r.

1 Our actual Tascell language has an S-expression based syntax [18], but we write programs with a
C-like syntax here for readers’ convenience.

89

Definitons of send/receive methods for inter-node communication There are

default send/receive methods automatically defined for each tasks, which send/receive

values of fields with in:/out: attributes; fields with in: are sent/received by default

task send/receive methods and fields with out: are sent/received by default result

send/receive methods. In addition, we can add user-defined send/receive methods, which

are called after default send/receive methods, in order to skip transmitting (part of) in-

puts/outputs selectively or allocating/freeing a working space.

A top-level declaration:

task_receive task-name { body }

defines how to receive serialized data from an input stream to initialize a task object.

This receiver called when a worker receives a task message for task-name from another

remote worker. We can refer to the task object (which includes parameters) by the

keyword this and use library functions to receive values of basic types from the input

stream (e.g., recv_int).

A top-level declaration:

task_send task-name { body }

defines how to send serialized data to an output stream to send a task object. This

receiver is called when a worker sends a task message for task-name to another remote

worker. We can refer to the task object by the keyword this and use library functions

to send values of basic types to the output stream (e.g., send_int).

A result sender/receiver is defined in the same way as a task sender/receiver:

rslt_receive task-name { body }

rslt_send task-name { body }.

Each of these is called after/before a worker receives/sends a rslt message from/to

another remote worker.

90

Definitons of send/receive methods for intra-node communication Transfer-

ring a task object between workers in the same computation node only requires passing

a pointer to the task object by default. However, in some cases, we need some side effect

such as allocating/freeing a working space. Such operations can be specified as local

transfer methods:

local_task_transfer task-name { body }

local_rslt_transfer task-name { body }.

Constructs for task division

A statement:

do_two statement1 statement2

task-name { statementput statementget }

indicates that a computation in statement2 (“fib(n-2)” in Figure 6.8) may be spawned

during the execution of statement1 (“s1=fib(n-1);” in Figure 6.8). More precise steps

are as follows:

1 Statement1 is executed with an implicit task request handler. If this handler is invoked

with a task request, it divides the current task by spawning a new task-name task, set-

ting the fields of the new task object by statementput (“this.n=n-2;” in Figure 6.8),

and then sending it to the task requester. Here, a computation in statement2 is

packed as the task object.

2a If the task request handler for do_two is not invoked during the execution of statement1,

statement2 is then executed.

2b Otherwise, the worker skips statement2, waits for the result of the spawned task and

then merges the result by executing statementget (“s2=this.r;” in Figure 6.8). In

waiting for the result, the worker may execute another task taken back from the task

requester in the Step 1 (by sending back a task request).

91

The identifier task-name specifies the type of a task to be created. The keyword

this can be used in statementput and statementget to refer to the task object. We should

initialize a task in statementput by assigning values to input fields, and can get a result

of the task in statementget by referring to output fields. This series of operations should

be equivalent to statement2.

For dividing an iterative computation, Tascell has the parallel for loop construct

syntactically denoted by:

for(int identifier : expressionfrom, expressionto)

statementbody

task-name (int identifier from, int identifier to)

{ statementput statementget}

For example, Figure 6.9 employs a parallel for statement of “for (int p: j1, j2)

{. . .} pentomino (int i1,int i2) {{. . .} {s+=this.s}}.” This iterates statementbody

over integers from expressionfrom (inclusive) to expressionto (exclusive). When the im-

plicit task request handler (available during the iterative execution of statementbody) is

invoked, the upper half of remaining iterations are spawned as a new task-name task. The

actual assigned range can be referred to in statementput by identifier from and identifier to .

The worker handles the result of the spawned task by executing statementget .

Tascell has the dynamic_wind construct as in the Scheme language [25] to define

undo/redo operations, syntactically denoted by:

dynamic_wind statementbefore statementbody statementafter .

This basically executes statementbefore(“set a piece” in Figure 6.9 as “do”), statementbody

and statementafter(“remove the piece” in Figure 6.9 as “undo”) in this order. During the

execution of statementbody , however, statementafter is also executed as an “undo” clause

before an attempt to invoke an older task request handler. Statementbefore is also executed

as a “redo” clause after the attempt.

92

Backtracking-based task division Do_two, parallel for and dynamic_wind state-

ments may be nested dynamically in their statement1 or statementbody . Therefore, multi-

ple task request handlers and undo-redo clauses may be available at the same time as in

Figures 6.5 and 6.6. Each worker tries to detect a task request by polling at every do_two

or parallel for statement. When the worker detects a task request, it performs tempo-

rary backtracking in order to spawn a larger task by invoking as old a handler as possible.

If there are undo-redo clauses on the backtracking path, undo clauses are executed in

turn for the backtracking and redo clauses are executed in turn for the restart.

Tascell Programming

We can write the Tascell program in Figure 6.8 by (1) starting with the C program

in Figure 6.1, (2) adding the keyword worker to the procedure fib, (3) finding two

statements which can be executed in parallel, (4) forming a do_two statement with

the consideration of the name and structure of the spawned task, and (5) defining the

structure and body of the task.

We can write the Tascell program in Figure 6.9 by starting with Figure 6.2 as above,

except that (1) we find iterations which can be executed in parallel if separate working

spaces are supplied, (2) we form a parallel for statement, (3) we prepare some working

space in the task structure and adjust the access to it, (4) we form a dynamic_wind

statement with existing do/undo operations, and (5) we adjust the parameter and body

of search in order to accept a task with iterations. Notice that this program avoids

undesirable copies of working spaces and promotes reuse/sharing of the working space.

6.5 Implementation

We implemented a Tascell compiler as a translator to standard C, which realizes high

portability. To realize the backtracking-restarting mechanism, accessing “sleeping” vari-

ables (variables whose values are located below the current frame in the execution stack)

is needed. Therefore, it seems to be impossible to implement this feature in standard C.

But this problem is solved by the LW-SC language as described in Chapter 4. That is,

we can get the translator to C by additionally implementing a translator from Tascell

93

int fib(void (*_bk0) lightweight (void), struct thread_data *_thr, int n)
{

if (n <= 2)
return 1;

else {
int s1, s2;
{ /*------------------ do two ------------------*/

struct tfib pthis[1]; // working space
int spawned = 0; // statement2 is spawned?
{
void _bk1_do_two lightweight (void)//nested function
{

if (spawned) return;
_bk0(); // continue backtracking
if (task request exists?) {

pthis->n = n - 2; //statementput
spawned = 1;
make_and_send_task(_thr, 0, pthis); // spawn

}
}
if (_thr->req) // polling

_bk1_do_two (); // start backtracking (call the nested function defined above)
{

s1 = fib(_bk1_do_two, _thr, n-1); // statement1
}

}
if (spawned) {
// Get and integrate the result of the spawned task
wait_rslt(_thr);
s2 = pthis->r; // statementget

} else {
s2 = fib(_bk0, _thr, n - 2); // statement2

}
} /*------------------ do two ------------------*/
return s1 + s2;

}
}

Figure 6.10: The translation result from the worker function fib in Figure 6.8, including
translation of a do two statement.

into LW-SC.

The program in Figure 6.8 is translated to the program in Figure 6.10 with nested

functions. Each worker function is translated to have an additional parameter _bk0 hold-

ing a nested function pointer corresponding to the newest handler for do_two, parallel

for or dynamic_wind statements. Each do_two statement is translated into a piece of

code which includes a definition of a nested function (_bk1_do_two in Figure 6.10) as

the newest handler, which is called when a task request is detected by polling. The

nested function first tries to spawn a larger task by calling a nested function (_bk0)

which corresponds to the second newest handler (which calls another nested function for

the third newest handler and so on). Only if a task request still remains, a new task

is created and sent to the requester. After sending a task, the worker returns from the

94

int search (void (*_bk0) lightweight (void), struct thread_data *_thr,
int k, int j0, int j1, int j2, struct pentomino *tsk)

{ int s = 0; // the number of solutions
{ /*------------------ parallel for ------------------*/

int p = j1; int p_end = j2;
struct pentomino *pthis;
int spawned = 0; // the number of spawned tasks
void _bk1_par_for lightweight (void){ //nested function

if (!spawned) _bk0(); // continue backtracking
while (p + 1 < p_end && task request exists?) {

int i1 = (1 + p + p_end)/2, i2 = p_end; // the range for the sub-task
p_end = i1; // shrink the range for itself
pthis = malloc(sizeof(struct pentomino)); // allocate a working space
{ //statementput

copy_piece_info(pthis->a, tsk->a);
copy_board(pthis->b, tsk->b);
pthis->k = k; pthis->i0 = j0; pthis->i1 = i1; pthis->i2 = i2; }

spawned++;
make_and_send_task(_thr, 0, pthis); // spawn

}
}
if (_thr->req) // polling

_bk1_par_for(); // start backtracking (call the nested function defined above)
for (; p < p_end; p++) {

int ap = (tsk->a)[p];
for (int i = pos[ap]; i < pos[ap + 1]; i++) {

// examine the ‘‘i-th’’ (piece, direction)
... local variable definitions ...
if (Can ps[i] be set into the board tsk->b?);

else continue;
{ /*------------ dynamic wind ------------*/

{ // do operation (statementbefore)
Set the piece ps[i] into the board tsk->b and update tsk->a. }

{
void _bk2_dwind lightweight(void)
{ // nested function

{ // undo operation (statementafter)
Remove the piece from tsk->b and restore tsk->a (backtracking). }

_bk1_par_for(); // continue backtracking (call the nested function defined above)
{ // redo operation (statementbefore)

Set the piece ps[i] into the board tsk->b and update tsk->a. }
}
{ // statementbody

kk = the next empty cell;
if (no empty cell?) s++; // a solution found
else s += search (_bk2_dwind, _thr, kk, j0+1, j0+1, 12, tsk); // the next piece

}
}
{ // undo operation (statementafter)

Remove the piece from tsk->b and restore tsk->a (backtracking). }
} /*------------ dynamic wind ------------*/

} }
while (spawned-- > 0) {

// Get and integrate results of spawned tasks
pthis = (struct pentomino *)wait_rslt(_thr);
s += pthis->s; // statementget
free(pthis); }

} /*------------------ parallel for ------------------*/
return s;

}

Figure 6.11: The translation result from the worker function search for Pentomino
in Figure 6.9, including translation of a parallel for statement and a dynamic wind

statement.

95

nested function and resumes its own computation.

A parallel for statement can be translated in the same way (Figure 6.11), except

that, in the nested function, the worker needs to calculate a ranges for a new task and

update a range for itself.

Translation for a dynamic_wind statement is also included in Figure 6.11. As you can

see, statementbody employs a nested function as the newest one, which is composed of (a

copy of) statementafter (as undo operations), a call to the second newest nested function,

and (a copy of) statementbefore (as redo operations), in order to perform undo/redo

operations as is described in Section 6.4.2.

6.6 Related work

LTC is one of the best implementation techniques for dynamic load balancing. In LTC,

a newly created thread is directly and immediately executed like a usual call while (the

continuation of) the oldest thread in the computing resource may be stolen by other

idle computing resources. Usually, the idle computing resource (thief) randomly selects

another computing resource (victim) for stealing a task. A message passing implemen-

tation [7] of LTC employs a polling method where the victim detects a task request sent

by the thief and returns a new task created by splitting the present running task. OPA

[49] and StackThreads/MP [47] employ this technique.

Tascell is similar to WorkCrews [51] and Lazy RPC [8]. They take the parent-first

strategy; at fork point, a worker executes the parent thread prior to the child thread and

makes the child stealable for other workers, and calls the child thread if it has not been

stolen at the join point of the parent thread.

Tascell supports distributed memory environments by transmitting inputs and out-

puts as task objects among computation nodes, instead of using distributed shared mem-

ory which distributed Cilk [36] and SilkRoad [31] use. Our approach enables program-

mers to program without consideration of the difference between shared and distributed

memory environments because the interface for passing task objects is integrated. Fur-

thermore, it is easy for new computation nodes to join a running computation dynami-

cally.

96

6.7 Evaluation

In this section, we evaluate the performance of the Tascell framework using the following

programs:

Fib(n) recursively computes the n-th Fibonacci number.

Nqueens(n) finds all solutions to the n-queens problem.

Pentomino(n) finds all solutions to the Pentomino problem with n pieces (using addi-

tional pieces and an expanded board for n > 12).

LU(n) computes the LU decomposition of an n × n matrix.

Comp(n) compares array elements ai and bj for all 0 ≤ i, j < n.

Grav(n) computes a total force exerted by (2n + 1)3 uniform particles.

LU and Comp use a cache-oblivious recursive algorithm.

The evaluation environment is summarized as follows:

• the Tascell server

– CPU: AMD Opteron 244 1.8GHz2

– OS: Rocks 4.0 (Linux kernel 2.6.9)

– Allegro Common Lisp 8.1 with (speed 3) (safety 1) (space 1) optimiz-

ers

• Computation nodes

– CPU: AMD Dual Core Opteron 265 1.8GHz2×2 (4 cores in total)

– OS: Rocks 4.0 (Linux kernel 2.6.9)

– GCC 3.4.3 with -O2 optimizers

2Optimized Power Management (OPM) is invalidated in order to prevent cores’ frequencies from
varying.

97

Elapsed time in seconds
(relative time to plain C)

C Cilk Tascell Tascell
(w/ copying)

Fib(40) 0.926 7.15 2.30 —
(1.00) (7.72) (2.48)

Nqueens(15) 10.3 29.8 15.8 25.4
(1.00) (2.89) (1.53) (2.47)

Pentomino(12) 1.68 2.37 2.19 2.80
(1.00) (1.41) (1.30) (1.67)

LU(2000) 8.66 8.54 8.69 —
(1.00) (0.986) (1.00)

Comp(30000) 4.31 7.84 5.42 —
(1.00) (1.82) (1.26)

Grav(200) 3.35 7.01 4.55 —
(1.00) (2.09) (1.35)

Table 6.1: Performance measurements with one worker.

• Network (in a distributed memory environment)

– Gigabit Ethernet

– Each node is TCP/IP connected to the single Tascell server.

To evaluate serial overheads, we ran the Tascell programs with one worker and com-

pared their execution time with C and Cilk (version 5.3) programs in the same algorithms.

In Nqueens, Pentomino and Grav programs, each thread requires its own working

space to hold one or more arrays. This is the case in many multithreaded languages other

than Cilk. In Cilk, a pseudo variable SYNCHED is provided, which promotes the reuse of a

working space among child logical threads [44], but child threads cannot share a working

space with their parent thread. Furthermore, for Nqueens and Pentomino, each thread

needs its own copy of its parent thread’s working space, resulting in considerable copying

overhead. In Tascell, the worker can reuse a single working space while it performs a

sequential computation as is shown in Section 6.3.

98

The results of the performance measurements are shown in Table 6.1. The overheads

in Tascell, which arise from polling and managing nested functions, are much lower than

Cilk for almost all applications. In particular, Fib shows a sharp contrast in overheads

because frequent creation of logical threads caused a higher overhead in Cilk. Nqueens

shows a higher contrast than Pentomino because of more frequent copying. LU shows

little overheads in both Cilk and Tascell because potential task division is infrequent.

There are additional overheads in Cilk that are broken down as follows:

(a) cost for explicit frame management,

(b) for the THE protocol [10] for consistent access to the logical thread queue, and

(c) cost of copying between working spaces for each thread (for Pentomino and Nqueens).

The copying overhead can be estimated as the difference between Tascell programs

with and without artificial copying shown in Table 6.1.

Table 6.2 shows the results of performance measurements with multiple workers in

a shared memory environment. Tascell almost always shows higher performance due

to its lower serial overheads. For instance, we achieved a speedup of 1.86 times (=

49.9s/26.8s) as compared with Cilk in Nqueens(16). Though both Tascell and Cilk show

good speedups, Tascell’s speedups are lower. This is because the current implementation

uses pthread_cond_wait for intra-node communication. (We expect that we can improve

by using shared-memory operations more directly.)

Tascell shows super-linear speedups in Comp because of the larger accumulated cache

size.

Tables 6.3 and 6.4 show the results of performance measurements on multiple com-

putation nodes, and Figures 6.12 and 6.13 show log-scaled graphs, which correspond to

Table 6.3, Table 6.4 respectively.3

In the environments where one worker running in each node (Table 6.3 and Figure 6.12),

Fib, Nqueens, Pentomino, Comp and Grav show good speedups because their computa-

tion time is sufficiently long relative to the amount of transmission among computation

3 We evaluated only Tascell because the standard implementation of Cilk only supports shared-
memory environments.

99

T(1,1) T(2,1) T(4,1)

Fib(40) 2.30 1.29 0.677
(1.00) (1.78) (3.40)

Fib(42) 6.04 3.40 1.73
(1.00) (1.78) (3.49)

Fib(44) 15.8 8.43 4.46
(1.00) (1.87) (3.54)

Nqueens(15) 15.8 7.95 4.02
(1.00) (1.99) (3.93)

Nqueens(16) 107 53.5 26.8
(1.00) (2.00) (3.99)

Pentomino(12) 2.19 1.15 0.579
(1.00) (1.90) (3.78)

Pentomino(13) 17.6 8.82 4.51
(1.00) (2.00) (3.90)

LU(2000) 8.69 4.55 2.55
(1.00) (1.91) (3.41)

Comp(30000) 5.42 2.61 1.35
(1.00) (2.08) (4.01)

Comp(60000) 21.8 10.1 5.14
(1.00) (2.16) (4.24)

Grav(200) 4.55 2.31 1.41
(1.00) (1.97) (3.23)

(a) Tascell

Elapsed time in seconds
(speedup relative to one worker execution time)

T(1,1) T(2,1) T(4,1)

Fib(40) 7.15 3.56 1.78
(1.00) (2.01) (4.02)

Fib(42) 18.8 9.29 4.66
(1.00) (2.02) (4.03)

Fib(44) 49.1 24.3 12.12
(1.00) (2.02) (4.05)

Nqueens(15) 29.8 14.9 7.47
(1.00) (2.00) (3.99)

Nqueens(16) 199 99.9 49.9
(1.00) (1.99) (3.99)

Pentomino(12) 2.37 1.19 0.602
(1.00) (1.99) (3.94)

Pentomino(13) 21.4 10.8 5.41
(1.00) (1.98) (3.96)

LU(2000) 8.54 4.47 2.50
(1.00) (1.91) (3.42)

Comp(30000) 7.84 4.07 2.04
(1.00) (1.93) (3.84)

Comp(60000) 30.9 16.1 7.94
(1.00) (1.92) (3.89)

Grav(200) 7.00 3.53 1.79
(1.00) (1.98) (3.91)
(b) Cilk

Table 6.2: Execution time T(k,1) (and relative speedup) with k workers in a shared
memory environment within one node.

100

Elapsed time in seconds
(speedup relative to one worker execution time)

T(1,1) T(1,2) T(1,4) T(1,8) T(1,16)

Fib(40) 2.30 1.30 0.707 0.411 0.244
(1.00) (1.77) (3.25) (5.60) (9.42)

Fib(42) 6.04 3.36 1.77 0.940 0.515
(1.00) (1.80) (3.41) (6.43) (11.7)

Fib(44) 15.8 8.58 4.57 2.10 1.23
(1.00) (1.84) (3.46) (7.52) (12.8)

Nqueens(15) 15.8 7.99 4.09 2.10 1.16
(1.00) (1.98) (3.86) (7.52) (13.6)

Nqueens(16) 107 53.7 27.0 13.7 7.02
(1.00) (1.99) (3.96) (7.81) (15.2)

Pentomino(12) 2.19 1.19 0.664 0.352 0.331
(1.00) (1.78) (3.19) (6.02) (6.40)

Pentomino(13) 17.6 8.87 4.79 2.52 1.44
(1.00) (1.98) (3.67) (6.98) (12.2)

LU(2000) 8.69 46.2 52.2 54.0 55.1
(1.00) (0.188) (0.166) (0.161) (0.158)

Comp(30000) 5.42 2.57 1.34 0.955 0.786
(1.00) (2.11) (4.04) (5.68) (6.90)

Comp(60000) 21.8 10.0 5.45 3.07 2.03
(1.00) (2.18) (4.00) (7.10) (10.7)

Grav(200) 4.55 2.31 1.17 0.643 0.377
(1.00) (1.97) (3.89) (7.08) (12.1)

Table 6.3: Elapsed time T(1,`) (and relative speedup) with ` distributed nodes each using
one workers.

101

Elapsed time in seconds
(speedup relative to one worker execution time)

T(4,1) T(4,2) T(4,4) T(4,8) T(4,16)

Fib(40) 0.677 0.369 0.229 0.178 0.137
(3.40) (6.23) (10.0) (12.9) (16.8)

Fib(42) 1.73 0.912 0.552 0.354 0.257
(3.49) (6.62) (10.9) (17.1) (23.5)

Fib(44) 4.46 2.55 1.24 0.789 0.534
(3.54) (6.20) (12.7) (20.0) (29.6)

Fib(50) 76.1 39.2 19.9 10.6 6.80
(3.73) (7.24) (14.3) (26.8) (41.8)

Nqueens(15) 4.02 2.06 1.12 0.736 0.532
(3.93) (7.67) (14.1) (21.5) (29.7)

Nqueens(16) 26.8 13.5 7.09 3.96 2.41
(3.99) (7.93) (15.1) (27.0) (44.4)

Nqueens(17) 190 95.3 49.4 25.0 13.4
(3.98) (7.94) (15.3) (30.3) (56.5)

Pentomino(12) 0.579 0.379 0.235 0.233 0.213
(3.78) (5.78) (9.32) (9.34) (10.3)

Pentomino(13) 4.51 2.64 1.46 0.931 0.772
(3.90) (6.67) (12.1) (18.9) (22.3)

Pentomino(14) 38.7 22.8 11.4 6.28 4.48
(3.98) (6.75) (13.5) (24.5) (34.4)

LU(2000) 2.55 14.2 29.2 40.3 36.1
(3.41) (0.612) (0.298) (0.216) (0.241)

Comp(30000) 1.35 0.749 0.509 0.495 0.580
(4.01) (7.23) (10.6) (10.9) (9.34)

Comp(60000) 5.14 2.72 1.85 1.43 1.30
(4.24) (8.01) (11.8) (15.2) (16.8)

Grav(200) 1.41 0.756 0.445 0.361 0.253
(3.23) (6.02) (10.2) (12.6) (18.0)

Grav(400) 10.2 5.69 2.97 1.85 1.08
(3.55) (6.36) (12.2) (19.6) (33.5)

Table 6.4: Elapsed time T(4,`) (and relative speedup) with ` distributed nodes each using
4 workers.

102

 1

 2

 4

 8

 16

 1 2 4 8 16

sp
ee

du
p

number of workers

ideal
Fib(44)

Nqueens(16)
Pentomino(13)
Comp(60000)

7.02s (Nqueens)
1.23s (Fib)
1.44s (Pentomino)
2.03 (Comp)

Figure 6.12: Speedups with multiple computation nodes each using one worker (corre-
sponding to Table 6.3)

 2

 4

 8

 16

 32

 64

 4 8 16 32 64

sp
ee

du
p

number of workers

ideal
Fib(50)

Nqueens(17)
Pentomino(14)
Comp(60000)

13.4s (Nqueens)

6.80s (Fib)
4.48s (Pentomino)

1.30s (Comp)

Figure 6.13: Speedups with multiple computation nodes each using 4 workers (corre-
sponding to Table 6.4)

103

nodes. In contrast, we could not get speedups in LU because the communication over-

heads for transmitting sub-matrices as sub-tasks or sub-results are much larger than

the effect of parallelization. Generally, it is difficult to obtain sufficient speedups in

applications with huge shared data such as LU with fully dynamic load balancing, as

experienced also in [50].

In environments where multiple workers running in each node, the workers run with

both inter- and intra-node communication. Table 6.4 and Figure 6.13 show that we can

get a good speedup also in such an environment as long as the size of a problem is

sufficiently large relative to the number of workers. The speedups in Comp are limited

because transmission costs of O(n) do not pay for small n since the time complexity of

Comp is O(n2).

We can improve performance in distributed memory environments by improving mes-

sage handling of a Tascell server or employing some mechanism for sharing data among

computation nodes.

104

Chapter 7

Related Work

This chapter introduces related work that is relevant with the SC language system and

our strategy for language extensions. See also Section 4.7, Section 5.4 and Section 6.6

for related work about each topic of the corresponding chapter.

7.1 Language Extensions by Code Translation

There exist many useful extensions to C such as Cilk [10] and OpenMP [32], but their

purpose is to implement their own extensions, not to make a framework for general

language extensions.

Lisp/Scheme is easy to be extended by transformation and to be written by humans.

Furthermore, there exist compilers from their languages to C [60, 22]. But they are not

suitable for describing low level operations such as pointer operations. From another

point of view, the SC language system applies the advantages of Lisp in extensibility to

C with preservation of its ability of low-level operations.

7.2 Lower-Level Scheme

Pre-Scheme [24] is a dialect of Scheme, which lacks some features such as garbage collec-

tion and full proper tail-recursion but preserves the other Scheme’s advantages such as

higher order procedures, interactive debugging, and macros and gives low-level machine

access of C. Our approach is to support language developers to implement language

105

extension rather than to support programmers for low-level programming, using some

advantages of Lisp/Scheme.

7.3 Reflection

Reflection is to manipulate behaviors of a running program by referring to or modify-

ing meta-level information as a first-class object, which enables us to extend a program

dynamically. Although it is very powerful in extensibility, it causes great decrease of

performance in many implementations that such information is kept by an interpreter.

Most implementation [5] overcomes this problem by restricting the extension targets.

Compile-time reflection [4, 46, 39, 38, 40] realizes such extension by transforming pro-

grams in compile-time, which is similar to our approach. But we provide more generic

framework to transform programs such as from LW-SC into C.

7.4 Aspect Oriented Programming

Aspect Oriented Programming [26] (AOP) is a programming paradigm to handle a cross-

cutting concern in one place. In general, it is implemented by inserting a method defined

as an advice into join points specified in a program. The SC language system also can be

used to implement this feature defining such insertion by adequate transformation rules.

7.5 Pattern-matching

There exist many implementations of pattern-matching utilities on S-expressions [34].

But the patterns which correspond to ,@symbol and ,@symbol[function-name] are not

popular.

In most of implementations, the form ?symbol is used as a pattern which corresponds

to our ,symbol . We adopted more intuitive backquote-macro-like notations in consider-

ation of symmetry between patterns and expressions.

106

7.6 Another S-Expression Based C

Symbolic C Expressions [28] (Scexp) is another S-expression based C language. It em-

phasizes usefulness of writing C code with Lisp macros. However, it is not intended to

be a base for language extensions.

7.7 Other Rule-based Transformations

7.7.1 Expert systems

Traditionally expert systems [1] are well known as rule based solution systems. They use

conflict resolution strategies which deal with more complicated cases.

Although our strategy only uses information about written orders of patterns and

the current rule-set, we may employ annotations for transformation rule-sets to generate

more sophisticated code (e.g., optimized code).

7.7.2 Rewriting rules

There are program transformation systems that use rewrite rules [52, 53, 6]. In most

such systems, rules are defined more declaratively and environments for object languages

are included in both patterns and outputs, while our translators treat such environments

basically by using side-effects or dynamic bindings in Common Lisp.

Though we prefer our approach in perspective of intuitive implementations of trans-

formations, it is also possible to use as a framework for implementing rewrite rules by

defining side-effect-free rule-sets.

7.7.3 XML

XML [54] is often used as internal representation for code analysis and transformation

[15]. Transformation over XML can be defined using XSLT (XSL Transformation) [55].

XML is also applicable for analysis and transformation, but does not suit our purpose

because it is too complicated to be written by humans unlike S-expressions.

107

7.8 Programs as Lisp Macro Forms

Our system treats SC programs as data. On the other hand, there are some S-expression

based markup languages where programs themselves are evaluated by a Lisp evaluator

as macro forms and object code is generated as a result [37, 9].

Though such an implementation for SC translators is not impossible, it would not

fit to the SC syntax well because the translator needs to change valid rules depending

on contexts and most of Lisp macro facilities (including define-syntax of Scheme etc.)

support only lists as patterns.

108

Chapter 8

Conclusion and Future Work

We proposed a scheme for extending the C language, where an S-expression based ex-

tended language is translated into a C language with an S-expression syntax. In this

scheme, we can extend C at lower implementation cost because we can easily manipu-

late S-expressions using Lisp and transformation rules can be written intuitively using

pattern-matching over S-expressions.

We also presented a technique to implement nested functions for the C language,

employing the SC language system. Since the implementation is transformation-based,

it enables us to implement high-level services with “stack walk” in a portable way. Fur-

thermore, such services can be efficiently implemented because we aggressively reduce

the cost of creating and maintaining nested functions using “lightweight” closures.

In order to enhance usefulness of SC languages, we implemented a C-to-SC translator

which enables SC programmers to include existing C header files. Since some C macros

cannot be translated into SC, we discussed the limitations of the automatic translation

and proposed practical countermeasure against them. Because a C macro can be defined

using syntactically incomplete token strings as an expanded code, some macro cannot

be translated into an SC macro which is defined using a parsing unit. But we can

implement a practical translator using some hypotheses. This strategy can be applied

when implementing interfaces between other languages. The translator also enables us to

implement a translator for C programs by writing rule-sets for the SC language system.

We actually presented some language extensions using the SC language system and

109

nested functions featured by LW-SC. In particular, we proposed a practical example

where a new scheme for dynamic load balancing, based on backtracking, is realized.

This scheme realizes quite low serial overheads because of no use of logical threads as

potential tasks and lazy allocation of working spaces. In particular, our scheme is useful

for search problems which include various important applications such as combinatorial

optimization problems. In addition, our task-object-based parallel programming model

enables programs to be easily applied for both shared and distributed (and also hybrid)

memory environments.

The SC language system can also be used for implementing languages other than

extended SC languages (e.g., Scheme and Java), which we plan to do as future work.

We will also improve Tascell described in Chapter 6, in aspects of ease of use and

efficiency. In particular, we will achieve more efficient computation in distributed memory

environments by implementing more sophisticated message handling among computation

nodes or utilizing distributed data sharing mechanisms such as DSM (Distributed Shared

Memory). We will also implement a mechanism to enable computation nodes to leave

safely.

110

Appendix A

The Syntax of the SC-1 Language

A.1 External Declarations

translation-unit :
external-declaration
translation-unit external-declaration

external-declaration :
declaration

A.2 Declarations

declaration-list :
declaration
declaration-list declaration

declaration :
inlined-declaration
(identifier type-expression initializeropt)
(function-identifier (fn function-type-list)

[:attr function-attribute]optregister-declaratoropt block-item-listopt)
(struct-or-union-specifier struct-declaration-listopt)
(enum-specifier enumerator-list)

inlined-declaration-list :
inlined-declaration

111

inlined-declaration-list declaration

inlined-declaration :
(storage-class-specifier identifier type-expression initializeropt)
(storage-class-specifier function-identifier (fn function-type-list)

[:attr function-attribute]optregister-declaratoroptblock-item-listopt)
(def-or-decl struct-or-union-specifier struct-declaration-listopt)
(def enum-specifier enumerator-list)
(compound-storage-class-specifier type-expression init-declarator-list)
(deftype identifier type-expression)
(deftype identifier struct-or-union struct-declaration-listopt)
(deftype identifier enum enumerator-list)

function-identifier :
identifier
(identifier-list)

def-or-decl :
def
decl

init-declarator-list :
init-declarator
init-declarator-list init-declarator

init-declarator :
identifier
(identifier initializer)

storage-class-specifier : one of
def decl extern extern-def extern-decl
static static-def auto auto-def register register-def

compound-storage-class-specifier : one of
defs extern-defs static-defs auto-defs register-defs

function-attribute :
inline

register-declarator :

112

(register identifier-list)

struct-declaration-list :
struct-declaration
struct-declaration-list struct-declaration

struct-declaration :
declaration [:bit expression]opt

enumerator-list :
enumerator
enumerator-list enumerator

enumerator :
enumeration-constant
(enumeration-constant expression)

enumeration-constant :
identifier

identifier-list :
identifier
identifier-list identifier

designator :
(aref-this expression-list)
(fref-this identifier-list)
(aref designator expression-list)
(fref designator identifier-list)

designated-initializer :
initializer
(designator initializer)

initializer-list :
designated-initializer
initializer-list designated-initializer

compound-initializer :
(array initializer-list)

113

(struct initializer-list)

initializer :
expression
compound-initializer

A.3 Type-expressions

type-expression :
type-specifier
(type-qualifier-list type-expression)
(array type-expression array-subscription-listopt)
(ptr type-expression)
(fn function-type-list)

function-type-list :
type-expression-list va-argopt

type-expression-list
type-expression
type-expression-list type-expression

type-specifier : one of
void
char signed-char unsigned-char short signed-short unsigned-short
int signed-int unsigned-int long signed-long unsigned-long
long-long signed-long-long unsigned-long-long
float double long-double
struct-or-union-specifier
enum-specifier
typedef-name

array-subscription-list :
expression-list

struct-or-union-specifier :
(struct-or-union identifier)

struct-or-union :

114

struct
union

enum-specifier :
(enum identifier)

type-qualifier-list :
type-qualifier
type-qualifier-list type-qualifier

type-qualifier :
const
restrict
volatile

typedef-name :
identifier

A.4 Statements

statement :
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
labeled-statement
()

compound-statement :
(begin block-item-listopt)
(let (declaration-listopt) block-item-listopt)

block-item-list :
block-item
block-item-list block-item

block-item :
inlined-declaration

115

statement

labeled-statement :
(label identifier statement)
(case expression)
(default)

expression-statement :
expression

selection-statement :
(if expression statement statementopt)
(switch expression block-item-listopt)

iteration-statement :
(while expression block-item-listopt)
(do-while expression block-item-listopt)
(for (expression-listopt expression expression) block-item-listopt)
(for (inlined-declaration-listopt expression expression) block-item-listopt)
(loop block-item-listopt)

jump-statement :
(goto identifier)
(continue)
(break)
(return expressionopt)

A.5 Expressions

expression :
identifier
constant
string-literal
compound-literal
(expression-list)
(aref expression-list)
(fref expression field-identifier-list)
(inc expression)
(dec expression)

116

(++ expression)
(-- expression)
(unary-operator expression)
(sizeof expression)
(sizeof type-expression)
(cast type-expression expression)
(operator expression-list)
(comparator expression expression)
(if-exp expression expression expression)
(assignment-operator expression expression)
(exps expression-list)

compound-literal :
(init type-expression compound-initializer)

expression-list :
expression
expression-list expression

field-identifier-list :
field-identifier
field-identifier-list field-identifier

field-identifier :
identifier
-> identifier

operator : one of
* / % + - << >> bit-xor bit-and bit-or and or

comparator : one of
< > <= >= == !=

assignment-operator : one of
= *= /= %= += -= <<= >>= bit-and= bit-xor= bit-or=

unary-operator : one of
ptr mref bit-not not

117

Appendix B

An Example of Translation from
LW-SC to SC-1

;;; The pointer to the moved ‘‘nested function’’.
(deftype nestfn-t

(ptr (fn (ptr char) (ptr char) (ptr void))))
;;; The structure which contains the pointer to the moved
;;; nested function and the frame pointer of
;;; the owner function.
(deftype closure-t struct
(def fun nestfn-t)
(def fr (ptr void)))

(deftype align-t double)

;;; The auxiliary function for calling nested functions.
(def (lw-call esp) (fn (ptr char) (ptr char))
(def clos (ptr closure-t)

(mref (cast (ptr (ptr closure-t)) esp)))
(return ((fref clos -> fun) esp (fref clos -> fr))))

;;; The frame structure of function h.
(def (struct h_frame)
(def tmp-esp (ptr char))
(def argp (ptr char))
(def call-id int)
(def tmp2 int)
(def tmp int)
(def g (ptr closure-t))
(def i int))

(def (h esp i g)
(fn int (ptr char) int (ptr closure-t))

(def argp (ptr char))
(def efp (ptr (struct h_frame)))
(def new-esp (ptr char))

118

(def esp-flag size-t (bit-and (cast size-t esp) 3))
(def tmp int)
(def tmp2 int)
(def tmp_fp (ptr closure-t))
(def tmp_fp2 (ptr closure-t))

;; Judge whether reconstruction of the execution stack is
;; required or not.
(if esp-flag

(begin
(= esp (cast (ptr char)

(bit-xor (cast size-t esp) esp-flag)))
(= efp (cast (ptr (struct h_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct h_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
;; Restore the execution point.
(label LGOTO

(switch (fref (mref efp) call-id)
(case 0) (goto l_CALL)
(case 1) (goto l_CALL2)))

(goto l_CALL)))
(= efp (cast (ptr (struct h_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct h_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
;; Call the nested function g.
(begin
(= tmp_fp g)
(= argp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (ptr char))
(sizeof align-t) -1)

(sizeof align-t)))))
;; Push the arguments passed to nested function.
(exps (= (mref (cast (ptr int) argp)) i)

(= argp
(cast (ptr char)
(+ (cast (ptr align-t) argp)

(/ (+ (sizeof int)

119

(sizeof align-t) -1)
(sizeof align-t))))))

;; Push the structure object that corresponds to
;; the frame of the nested function to
;; the explicit stack.
(= (mref (cast (ptr (ptr closure-t)) argp)) tmp_fp)
;; Save the values of local variables to the frame.
(= (fref efp -> tmp2) tmp2)
(= (fref efp -> tmp) tmp)
(= (fref efp -> g) g)
(= (fref efp -> i) i)
(= (fref efp -> argp) argp)
(= (fref efp -> tmp-esp) argp)
;; Save the current execution point.
(= (fref efp -> call-id) 0)
(return (- (cast int 0) 1))
;; Continue the execution from here after the function call finishes.
(label l_CALL nil)
;; Restore local variables from the explicit stack.
(= tmp2 (fref efp -> tmp2))
(= tmp (fref efp -> tmp))
(= g (fref efp -> g))
(= i (fref efp -> i))
;; Get the return value.
(= tmp (mref (cast (ptr int) (fref efp -> argp)))))

;; Call the nested function g.
(begin

(= tmp_fp2 g)
(= argp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (ptr char))
(sizeof align-t) -1)

(sizeof align-t)))))
;; Push the arguments passed to nested function.
(exps (= (mref (cast (ptr int) argp)) tmp)

(= argp
(cast (ptr char)

(+ (cast (ptr align-t) argp)
(/ (+ (sizeof int)

(sizeof align-t) -1)
(sizeof align-t))))))

;; Push the structure object that corresponds to
;; the frame of the nested function to
;; the explicit stack.
(= (mref (cast (ptr (ptr closure-t)) argp))

tmp_fp2)
;; Save the values of local variables to the frame.
(= (fref efp -> tmp2) tmp2)
(= (fref efp -> tmp) tmp)
(= (fref efp -> g) g)

120

(= (fref efp -> i) i)
(= (fref efp -> argp) argp)
(= (fref efp -> tmp-esp) argp)
;; Save the current execution point.
(= (fref efp -> call-id) 1)
(return (- (cast int 0) 1))
;; Continue the execution from here after
;; the function call finishes.
(label l_CALL2 nil)
(= tmp2 (fref efp -> tmp2))
(= tmp (fref efp -> tmp))
(= g (fref efp -> g))
(= i (fref efp -> i))
;; Get the return value.
(= tmp2 (mref (cast (ptr int)

(fref efp -> argp)))))
(return tmp2))

;;; The frame structure of function foo.
(def (struct foo_frame)

(def tmp-esp (ptr char))
(def argp (ptr char))
(def call-id int)
(def tmp3 int)
(def y int)
(def x int)
(def a int)
(def g10 closure-t))

;;; The frame structure of function g1 .
(def (struct g1_in_foo_frame)

(def tmp-esp (ptr char))
(def argp (ptr char))
(def call-id int)
(def b int)
(def xfp (ptr (struct foo_frame))))

;;; Nested function g1 (moved to the top-level).
(def (g1_in_foo esp xfp0)

(fn (ptr char) (ptr char) (ptr void))
(def new-esp (ptr char))
(def efp (ptr (struct g1_in_foo_frame)))
;; The frame pointer of the owner function.
(def xfp (ptr (struct foo_frame)) xfp0)
(def esp-flag size-t (bit-and (cast size-t esp) 3))
(def parmp (ptr char)

(cast (ptr char)
(bit-xor (cast size-t esp) esp-flag)))

;; Pop parameters from the explicit stack.
(def b int

(exps
(= parmp

(cast (ptr char)

121

(- (cast (ptr align-t) parmp)
(/ (+ (sizeof int) (sizeof align-t) -1)

(sizeof align-t)))))
(mref (cast (ptr int) parmp))))

(label LGOTO nil)
(= efp (cast (ptr (struct g1_in_foo_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct g1_in_foo_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
(inc (fref xfp -> x))
;; Push the return value to the explicit stack.
(= (mref (cast (ptr int) efp)) (+ (fref xfp -> a) b))
(return 0))

(def (foo esp a) (fn int (ptr char) int)
(def efp (ptr (struct foo_frame)))
(def new-esp (ptr char))
(def esp-flag size-t (bit-and (cast size-t esp) 3))
(def x int 0)
(def y int 0)
(def tmp3 int)

;; Judge whether reconstruction of the execution stack is
;; required or not.
(if esp-flag

(begin
(= esp (cast (ptr char)

(bit-xor (cast size-t esp) esp-flag)))
(= efp (cast (ptr (struct foo_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct foo_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
(label LGOTO
;; Restore the execution point.
(switch (fref (mref efp) call-id)

(case 0) (goto l_CALL3)))
(goto l_CALL3)))

(= efp (cast (ptr (struct foo_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)

122

(+ (cast (ptr align-t) esp)
(/ (+ (sizeof (struct foo_frame))

(sizeof align-t) -1)
(sizeof align-t)))))

(= (mref (cast (ptr (ptr char)) esp)) 0)
(= new-esp esp)
;; Call the ordinary function h.
(while

(and
(== (= tmp3 (h new-esp 10

(ptr (fref
(cast (ptr (struct foo_frame))

esp)
-> g10))))

(- (cast int 0) 1))
(!= (= (fref efp -> tmp-esp)

(mref (cast (ptr (ptr char)) esp))) 0))
;; Save the values of local variables to the frame.
(= (fref efp -> tmp3) tmp3)
(= (fref efp -> y) y)
(= (fref efp -> x) x)
(= (fref efp -> a) a)
(= (fref efp -> g10 fun) g1_in_foo)
(= (fref efp -> g10 fr) (cast (ptr void) efp))
;; Save the current execution point.
(= (fref efp -> call-id) 0)
(return (- (cast int 0) 1))
;; Continue the execution from here after
;; the function call finishes.
(label l_CALL3 nil)
;; Restore local variables from the explicit stack.
(= tmp3 (fref efp -> tmp3))
(= y (fref efp -> y))
(= x (fref efp -> x))
(= a (fref efp -> a))
(= new-esp (+ esp 1)))

(= y tmp3)
(return (+ x y)))

;;; The frame structure of function main .
(def (struct main_frame)

(def tmp-esp (ptr char))
(def argp (ptr char))
(def call-id int)
(def tmp4 int))

(def (main) (fn int)
(def efp (ptr (struct main_frame)))
(def new-esp (ptr char))
(def estack (array char 65536)) ; The explicit stack.
(def esp (ptr char) estack)
(def tmp4 int)

123

(label LGOTO nil)
(= efp (cast (ptr (struct main_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct main_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
(= new-esp esp)
(while

(and
(== (= tmp4 (foo new-esp 1))

(- (cast int 0) 1))
(!= (= (fref efp -> tmp-esp)

(mref (cast (ptr (ptr char)) esp))) 0))
(def goto-fr (ptr char))
(= (mref (cast (ptr (ptr char)) esp)) 0)
(= (fref efp -> tmp4) tmp4)
;; Execute nested functions.
(= goto-fr (lw-call (fref efp -> tmp-esp)))
(if (== (cast (ptr char) goto-fr)

(cast (ptr char) efp))
(goto LGOTO))

(= new-esp (+ esp 1)))
(return tmp4))

124

Appendix C

Message Protocol in Tascell
Framework

A message transmitted among workers and Tascell servers is one of the followings:

• treq addresssrc addressdest |any
is generated by an idle worker to request a task to another worker. The worker

which received this message sends back a task if it can spawn a new task, or a none

otherwise. When a Tascell server received a treq with any as second argument, it

asks a task of each computation node, and then the computation node asks a task

of each worker. If no computation nodes have any task to be spawned, the server

preserves the treq message and sends again it later.

• task ndiv addresssrc addressdest task-no [data]

is generated by a worker which received a treq and has a task to be spawned. The

data is serialized data of the task object, which is sent only if the message is for

another computation node; the object is transmitted via a shared memory instead

for the same computation node. The parameter task-no specifies which kind of a

task to be driven. The parameter ndiv specifies how many times the task is divided.

The information gives an indication of how large a task the computation node has.

Therefore it is stored in the Tascell server and used to decide to which node treq

messages with any arguments are sent.

125

• none addressdest

is generated by a worker which received a treq but has no task to be spawned.

• rslt addressdest [data]

is generated by a worker which finished the computation of the task message to

return the result. The data is serialized data of the task object, which is sent only

if the message is for another computation node (as well as a task message).

• rack addressdest

is generated by a worker which received a rslt message to acknowledge that the

worker surely received the result.

Each addresssrc or addressdest is specified as a path from the direct receivers of the

message to the destination, which is specified by a sequence of integers or ‘p’s separated

by ‘:’s. A Tascell server can identify a computation node or a child server connected to

it by an integer, and a computation node can identify a worker in it by an integer, too.

In addition, the character p is used to point a parent. The addresses are modified when

the messages are relayed by servers.

For example, sending a treq from the worker (a) to the worker (b) in Figure 6.7 is

done as follows

1. The worker (a) sends “treq n:0 0:1” the connecting server.

2. The server sends “treq p:n:0 1” to the computation node of (b).

3. The computation node notify the worker (b) of the task request.

Then the worker (b) can return a task or a none to (a) by using the relative address

“p:n:0”.

126

Bibliography

[1] Bobrow, D. G., Mittal, S. and Stefik, M. J.: Expert systems: perils and promise,

Commun. ACM, Vol. 29, No. 9, pp. 880–894 (1986).

[2] Boehm, H.-J. and Weiser, M.: Garbage Collection in an Uncooperative Environ-

ment, Software Practice & Experience, Vol. 18, No. 9, pp. 807–820 (1988).

[3] Breuel, T. M.: Lexical Closures for C++, Usenix Proceedings, C++ Conference

(1988).

[4] Chiba, S.: A Metaobject Protocol for C++, ACM Sigplan Notices, Vol. 30, No. 10,

pp. 285–299 (1995).

[5] Chiba, S. and Masuda, T.: Designing an Extensible Distributed Language with a

Meta-Level Architecture, In Proceedings of European Conference on Object Oriented

Programming (ECOOP), LNCS 707, pp. 482–501 (1993).

[6] Cleenewerck, T. and D’Hondt, T.: Disentangling the implementation of local-to-

global transformations in a rewrite rule transformation system, SAC ’05: Proceed-

ings of the 2005 ACM symposium on Applied computing, ACM Press, pp. 1398–1403

(2005).

[7] Feeley, M.: A Message Passing Implementation of Lazy Task Creation, Proceed-

ings of the International Workshop on Parallel Symbolic Computing: Languages,

Systems, and Applications, Lecture Notes in Computer Science, No. 748, Springer-

Verlag, pp. 94–107 (1993).

127

[8] Feeley, M.: Lazy Remote Procedure Call and its Implementation in a Parallel Vari-

ant of C, Proceedings of International Workshop on Parallel Symbolic Languages

and Systems, Lecture Notes in Computer Science, No. 1068, Springer-Verlag, pp.

3–21 (1995).

[9] Franz Inc.: HTML Generation Facility. http://allegroserve.sourceforge.net/

aserve-dist/doc/htmlgen.html.

[10] Frigo, M., Leiserson, C. E. and Randall, K. H.: The Implementation of the Cilk-5

Multithreaded Language, ACM SIGPLAN Notices (PLDI ’98), Vol. 33, No. 5, pp.

212–223 (1998).

[11] Goldstein, S. C., Schauser, K. E. and Culler, D. E.: Lazy Threads: Implementing

a Fast Parallel Call, Journal of Parallel and Distributed Computing, Vol. 3, No. 1,

pp. 5–20 (1996).

[12] Graham, P.: On LISP: Advanced Techniques for Common LISP, Prentice Hall

(1993).

[13] Halstead, Jr., R. H.: New Ideas in Parallel Lisp: Language Design, Implementa-

tion, and Programming Tools, Parallel Lisp: Languages and Systems (Ito, T. and

Halstead, R. H., eds.), Lecture Notes in Computer Science, Vol. 441, Sendai, Japan,

June 5–8, Springer, Berlin, pp. 2–57 (1990).

[14] Hanson, D. R. and Raghavachari, M.: A Machine-Independent Debugger, Software

– Practice & Experience, Vol. 26, No. 11, pp. 1277–1299 (1996).

[15] Hayato, K. and Katsuhiko, G.: Designing Program Information Extraction System

Based on ACML, In Proc. of 20th National Convention JSSST (2003).

[16] Henderson, F.: Accurate Garbage Collection in an Uncooperative Environment,

Proc. of the 3rd International Symposium on Memory Management, pp. 150–156

(2002).

128

http://allegroserve.sourceforge.net/aserve-dist/doc/htmlgen.html
http://allegroserve.sourceforge.net/aserve-dist/doc/htmlgen.html

[17] Hiraishi, T., Li, X., Yasugi, M., Umatani, S. and Yuasa, T.: Language Extension by

Rule-based Transformation for S-Expression-Based C Languages, IPSJ Transactions

on Programming, Vol. 46, No. SIG1(PRO 24), pp. 40–56 (2005). (in Japanese).

[18] Hiraishi, T., Yasugi, M. and Yuasa, T.: Experience with SC: Transformation-based

Implementation of Various Language Extensions to C, Proceedings of the Interna-

tional Lisp Conference, Clare College, Cambridge, U.K., pp. 103–113 (2007).

[19] IEEE: IEEE Std 1003.1-2001 Standard for Information Technology — Portable Op-

erating System Interface (POSIX) Base Definitions, Issue 6 (2001). Revision of

IEEE Std 1003.1-1996 and IEEE Std 1003.2-1992) Open Group Technical Standard

Base Specifications, Issue 6.

[20] ISO/IEC: ISO/IEC 9899:1990(E) Programming Languages — C (1990).

[21] ISO/IEC: ISO/IEC 9899:1999(E) Programming Languages — C (1999).

[22] Joel, F. B.: SCHEME->C a Portable Scheme-to-C Compiler, WRL Research Report

(1989).

[23] Jones, S. P., Ramsey, N. and Reig, F.: C−−: A Portable Assembly Language That

Supports Garbage Collection, International Conference on Principles and Practice

of Declarative Programming (1999).

[24] Kelsey, R.: Pre-Scheme: A Scheme Dialect for Systems Programming.

[25] Kelsey, R., Clinger, W. and Rees, J.: Revised5 Report on the Algorithmic Language

Scheme, ACM SIGPLAN Notices, Vol. 33, No. 9, pp. 26–76 (1998).

[26] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-

M. and Irwin, J.: Aspect-Oriented Programming, Proceedings European Conference

on Object-Oriented Programming (Akşit, M. and Matsuoka, S., eds.), Vol. 1241,

Springer-Verlag, Berlin, Heidelberg, and New York, pp. 220–242 (1997).

[27] MacLachlan, R. A.: CMUCL User’s Manual (2004). http://www.cons.org/

cmucl/.

129

http://www.cons.org/cmucl/
http://www.cons.org/cmucl/

[28] Mastenbrook, B.: scexp — Symbolic C Expressions (2004). http://www.unmutual.

info/software/scexp/.

[29] Matsui, K.: MCPP — A portable C preprocessor with Validation Suite (2004).

http://www.m17n.org/mcpp/.

[30] Mohr, E., Kranz, D. A. and Halstead, Jr., R. H.: Lazy Task Creation: A Technique

for Increasing the Granularity of Parallel Programs, IEEE Transactions on Parallel

and Distributed Systems, Vol. 2, No. 3, pp. 264–280 (1991).

[31] Peng, L., Wong, W. F., Feng, M. D. and Yuen, C. K.: SilkRoad: A Multithreaded

Runtime System with Software Distributed Shared Memory for SMP Clusters, IEEE

International Conferrence on Cluster Computing (Cluster2000), pp. 243–249 (2000).

[32] PHASE Editorial Committee: Omni: OpenMP compiler project. http://phase.

hpcc.jp/Omni/.

[33] Plevyak, J., Karamcheti, V., Zhang, X. and Chien, A. A.: A Hybrid Execution

Model for Fine-Grained Languages on Distributed Memory Multicomputers, Super-

computing’95 (1995).

[34] Queinnec, C.: Compilation of Non-linear, Second Order Patterns on S-expressions,

PLILP’90, LNCS 456, pp. 340–357 (1990).

[35] Ramsey, N. and Jones, S. P.: A Single Intermediate Language That Supports Mul-

tiple Implementations of Exceptions, Proc. of the ACM SIGPLAN’00 Conference

on Programming Language Design and Implementation, pp. 285–298 (2000).

[36] Randall, K.: Cilk: Efficient Multithreaded Computing, Technical Report

MIT/LCS/TR-749 (1998).

[37] Rosenberg, K.: LML: The Lisp Markup Language. http://lml.b9.com/.

[38] Roudier, Y. and Ichisugi, Y.: Integrating data-parallel and reactive constructs into

Java, In Proc. of France-Japan Workshop on OBPDC’97 (1997).

130

http://www.unmutual.info/software/scexp/
http://www.unmutual.info/software/scexp/
http://www.m17n.org/mcpp/
http://phase.hpcc.jp/Omni/
http://phase.hpcc.jp/Omni/
http://lml.b9.com/

[39] Roudier, Y. and Ichisugi, Y.: Java Data-parallel Programming using an Extensible

Java Preprocessor, Swopp’97 (1997).

[40] Roudier, Y. and Ichisugi, Y.: Mixin Composition Strategies for the Modular Imple-

mentation of Aspect Weaving, Aspect-Oriented Programming Workshop at ICSE’98

(1998).

[41] Stallman, R. M.: Using and Porting GNU Compiler Collection (1999).

[42] Steele Jr., G. L.: Common Lisp: The Language, Second Edition, Digital Press

(1990).

[43] Strumpen, V.: Compiler Technology for Portable Checkpoints, http://theory.

lcs.mit.edu/∼porch/ (1998).

[44] Supercomputing Technologies Group: Cilk 5.4.6 Reference Manual, Massachusetts

Institute of Technology, Laboratory for Computer Science, Cambridge, Mas-

sachusetts, USA.

[45] Tabata, Y., Yasugi, M., Komiya, T. and Yuasa, T.: Implementation of Multiple

Threads by Using Nested Functions, IPSJ Transactions on Programming, Vol. 43,

No. SIG 3(PRO 14), pp. 26–40 (2002). (in Japanese).

[46] Tatsubori, M., Chiba, S., Killijian, M.-O. and Itano, K.: OpenJava: A Class-based

Macro System for Java, Reflection and Software Engineering (Cazzola, W., Stroud,

R. J. and Tisato, F., eds.), LNCS 1826, Springer-Verlag, pp. 119–135 (2000).

[47] Taura, K., Tabata, K. and Yonezawa, A.: StackThreads/MP: Integrating Futures

into Calling Standards, Proceedings of ACM SIGPLAN Symposium on Principles

& Practice of Parallel Programming (PPoPP), pp. 60–71 (1999).

[48] Taura, K. and Yonezawa, A.: Fine-Grain Multithreading with Minimal Compiler

Support: A Cost Effective Approach to Implementing Efficient Multithreading Lan-

guages, Proc. of Conference on Programming Language Design and Implementation,

pp. 320–333 (1997).

131

http://theory.lcs.mit.edu/~porch/
http://theory.lcs.mit.edu/~porch/

[49] Umatani, S., Yasugi, M., Komiya, T. and Yuasa, T.: Pursuing Laziness for Efficient

Implementation of Modern Multithreaded Languages, Proc. of the 5th International

Symposium on High Performance Computing, Lecture Notes in Computer Science,

No. 2858, pp. 174–188 (2003).

[50] van Nieuwpoort, R. V., Kielmann, T. and Bal, H. E.: Efficient load balancing for

wide-area divide-and-conquer applications, PPoPP ’01: Proceedings of the eighth

ACM SIGPLAN symposium on Principles and practices of parallel programming,

New York, NY, USA, ACM, pp. 34–43 (2001).

[51] Vandevoorde, M. T. and Roberts, E. S.: WorkCrews: An Abstraction for Controlling

Parallelism, International Journal of Parallel Programming, Vol. 17, No. 4, pp. 347–

366 (1988).

[52] Visser, E.: Stratego: A Language for Program Transformation Based on Rewriting

Strategies, Lecture Notes in Computer Science, Vol. 2051, pp. 357+ (2001).

[53] Visser, E., Benaissa, Z.-e.-A. and Tolmach, A.: Building Program Optimizers with

Rewriting Strategies, Proceedings of the third ACM SIGPLAN International Con-

ference on Functional Programming (ICFP’98), ACM Press, pp. 13–26 (1998).

[54] W3C Architecture Domain: Extensible Markup Language (XML). http://www.

w3.org/XML/.

[55] W3C Recommendation: XSL Transformations (XSLT) Version1.0 (1999). http:

//www.w3.org/TR/xslt.

[56] Yasugi, M., Komiya, T. and Yuasa, T.: Dynamic Load Balancing by Using Nested

Functions and Its High-Level Description, IPSJ Transactions on Advanced Comput-

ing Systems, Vol. 45, No. SIG 11(ACS 7), pp. 368–377 (2004). (in Japanese).

[57] Yasugi, M., Komiya, T. and Yuasa, T.: An Efficient Load-Balancing Framework

Based on Lazy Partitioning of Sequential Programs, Proceedings of the Workshop

on New Approaches to Software Construction, pp. 65–84 (2004).

132

http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

[58] Yasugi, M., Takada, J., Tabata, Y., Komiya, T. and Yuasa, T.: Primitives for Shared

Memory and Its Implementation with GCC, IPSJ Transactions on Programming,

Vol. 43, No. SIG 1(PRO 13), pp. 118–132 (2002). (in Japanese).

[59] Yasugi, M., Hiraishi, T. and Yuasa, T.: Lightweight Lexical Closures for Legitimate

Execution Stack Access, Proceedings of 15th International Conference on Compiler

Construction (CC2006), Lecture Notes in Computer Science, No. 3923, Springer-

Verlag, pp. 170–184 (2006).

[60] Yuasa, T.: Design and Implementation of Kyoto Common Lisp, Journal of Infor-

mation Processing, Vol. 13, No. 3, pp. 284–293 (1990).

133

Publications

Refereed Articles

1. Tasuku Hiraishi, Xiaolu Li, Masahiro Yasugi, Seiji Umatani and Taiichi Yuasa.

Language Extension by Rule-Based Transformation for S-Expression Based C Lan-

guages. IPSJ Transactions on Programming, Vol. 46, No. SIG1 (PRO 24), pp.

40–56, 2005 (in Japanese).

2. Tasuku Hiraishi, Masahiro Yasugi and Taiichi Yuasa. Effective Utilization of Ex-

isting C Header Files in Other Languages with Different Syntaxes. Computer

Software, Vol. 23, No. 2, pp. 225–238, 2006 (in Japanese).

3. Tasuku Hiraishi, Masahiro Yasugi and Taiichi Yuasa. A Transformation-based

Implementation of Lightweight Nested Functions. IPSJ Digital Courier, Vol. 2,

pp. 262–279, 2006.

Refereed Proceedings Articles

1. Tasuku Hiraishi, Masahiro Yasugi and Taiichi Yuasa. Implementing S-expression

Based Extended Languages in Lisp. In Proc. of International Lisp Conference

(ILC2005), Stanford University, CA, USA, pp. 179–188, June 2005.

2. Masahiro Yasugi, Tasuku Hiraishi and Taiichi Yuasa. Lightweight Lexical Closures

for Legitimate Execution Stack Access. In Proc. of 15th International Conference

on Compiler Construction (CC2006), Vienna, Austria, LNCS 3923, pp. 170–184,

March 2006.

134

3. Tasuku Hiraishi, Masahiro Yasugi and Taiichi Yuasa. Experience with

SC: Transformation-based Implementation of Various Language Extensions to C.

In Proc. of International Lisp Conference (ILC2007), Clare College, Cambridge,

U.K., pp. 103-113, April 2007.

Referred Coauthor Articles

1. Masahiro Yasugi, Tasuku Hiraishi, Takenari Shinohara and Taiichi Yuasa. L-

Closures: A Language Mechanism for Implementing Efficient and Safe Program-

ming Languages. IPSJ Transactions on Programming, to appear (in Japanese).

Presentations

1. Tasuku Hiraishi. Design and Implementation of S-expression-based C Language

suitable for extension and transformation. JSSST Workshop on Programming and

Programming Languages (PPL2003), Category 3, Shizuoka Prefecture, March 2003.

(in Japanese).

2. Tasuku Hiraishi, Masahiro Yasugi, Tsuneyasu Komiya and Taiichi Yuasa. De-

sign and Implementation of S-expression-based C Language suitable for extension

and transformation. In Proc. of 20th National Convention JSSST, [1B-4], Aichi

Prefectural University, September 2003. (in Japanese).

3. Ryuta Obayashi, Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani and Taiichi

Yuasa. A Preliminary Implementation of a Load-balancing Framework Based on

Lazy Partitioning. In Proc. of Summer United Workshops on Parallel, Distributed

and Cooperative Processing (SWoPP 2005), PRO-3, Saga Prefecture, August 2005.

(in Japanese)

4. Takuya Nagasaka, Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani and Taiichi

Yuasa. Towards Implementing the Source Level Checkpointing. In Proc. of

22th National Convention JSSST, [3A-3], Tohoku University, September 2005. (in

Japanese).

135

	1 Introduction
	1.1 Background
	1.2 Our Proposal
	1.3 Contributions
	1.4 Organization of the Thesis

	2 The SC Language System
	2.1 Overview
	2.2 The SC-0/1 Language and the SC Compiler
	2.2.1 Expressions
	2.2.2 Statements
	2.2.3 Type expressions and type definitions
	2.2.4 Declarations
	2.2.5 Definitions of enumerations, structs and unions

	2.3 SC Preprocessors
	2.4 SC Translators and Transformation Rules
	2.4.1 Defining rule-sets
	2.4.2 Defining rules
	2.4.3 Patterns
	2.4.4 Applying rule-sets
	2.4.5 Applying rules
	2.4.6 Example

	2.5 Implementation

	3 Evaluation and Discussion
	3.1 Implementation Cost for Language Extension
	3.1.1 The extended language for evaluation
	3.1.2 Implementation strategy
	3.1.3 Comparison of the implementation costs

	3.2 Discussion
	3.2.1 Extensibility of rule-sets
	3.2.2 Ease of use

	4 Transformation-based Implementation of Lightweight Nested Functions
	4.1 Introduction
	4.2 Language Specification of LW-SC
	4.3 GCC's Implementation of Nested Functions
	4.4 Implementation of LW-SC
	4.4.1 Basic ideas
	4.4.2 Transformation strategy
	4.4.3 Transformation rule-sets

	4.5 Evaluation
	4.5.1 Creation and maintenance cost
	4.5.2 Invocation cost

	4.6 Implementation of High-level Services
	4.6.1 HSC---Copying GC
	4.6.2 MT-SC---Multi-threading

	4.7 Related Work
	4.7.1 Compiler-based implementations of nested functions
	4.7.2 Closure objects in modern languages
	4.7.3 Portable assembly languages
	4.7.4 High-level services

	5 Using Existing C Header Files in SC Based on Translation from C to SC
	5.1 Why We Need Translation from C to SC
	5.2 Implementation
	5.2.1 Overview
	5.2.2 Translation of C macros into SC macros
	5.2.3 Countermeasures

	5.3 Evaluation and Discussion
	5.3.1 Translation results from the standard POSIX header files
	5.3.2 Safety of translation
	5.3.3 Prompting by multiple candidates

	5.4 Related Work
	5.4.1 Foreign function interfaces
	5.4.2 Including C header files in C++

	6 Backtracking-based Load Balancing
	6.1 Introduction
	6.2 Motivating Examples
	6.3 Our approach
	6.4 Tascell Framework
	6.4.1 Overview
	6.4.2 Tascell Language

	6.5 Implementation
	6.6 Related work
	6.7 Evaluation

	7 Related Work
	7.1 Language Extensions by Code Translation
	7.2 Lower-Level Scheme
	7.3 Reflection
	7.4 Aspect Oriented Programming
	7.5 Pattern-matching
	7.6 Another S-Expression Based C
	7.7 Other Rule-based Transformations
	7.7.1 Expert systems
	7.7.2 Rewriting rules
	7.7.3 XML

	7.8 Programs as Lisp Macro Forms

	8 Conclusion and Future Work
	A The Syntax of the SC-1 Language
	A.1 External Declarations
	A.2 Declarations
	A.3 Type-expressions
	A.4 Statements
	A.5 Expressions

	B An Example of Translation from LW-SC to SC-1
	C Message Protocol in Tascell Framework

