
Implementing S-Expression Based Extended Languages
in Lisp

Tasuku Hiraishi Masahiro Yasugi Taiichi Yuasa

{hiraisi, yasugi, yuasa}@kuis.kyoto-u.ac.jp
Graduate School of Informatics, Kyoto University

Sakyo Kyoto, JAPAN 606-8501

ABSTRACT
Many extended, C-like languages can be implemented by translat-
ing them into C. This paper proposes an extension scheme for SC
languages (extended/plain C languages with an S-expression based
syntax). The extensions are implemented by transformation rules
over S-expressions, that is, Lisp functions with pattern-matching
on S-expressions. Thus, many flexible extensions to C can be im-
plemented at low cost because (1) of the ease with which new
constructs can be added to an SC language, and (2) of the pre-
existing Common Lisp capabilities for reading/printing, analyz-
ing, and transforming S-expressions themselves. We also present a
practical example of just such an extended language.

Keywords
C, Lisp, language extensions, nested functions, intermediate lan-
guages

1. INTRODUCTION
The C language is often indispensable for developing practical sys-
tems, but it is not so easy to extend the C language by adding a
new feature such as fine-grain multi-threading. We can implement
language extension by modifying a C compiler, but sometimes we
can do it by translating an extended C program to an Abstract Syn-
tax Tree (AST), apply analysis or transformation necessary for the
extension, and then generate C code. Structures, objects (in object-
oriented languages), or variants are traditionally used as the data
structure for an AST.

This paper proposes a new scheme where an AST is represented by
an S-expression and such an S-expression is also used as (a part of)
a program. For this purpose we have designed SC, a C language
with an S-expression-based syntax. This scheme enables us to im-
plement language extension at low cost because (1) adding new
constructs is easy, (2) S-expressions can easily be read/printed, an-
alyzed, and transformed in Common Lisp, which features dynamic
variables useful for transformation. We also developed the SC lan-
guage system in Common Lisp. In this language system, exten-
sion developers can implement their extensions by writing some

transformation rules over S-expressions. The rules are described as
function definitions with pattern-matching on their arguments.

We have implemented some language extensions such as multi-
threading and check-pointing using this system, and this pa-
per mainly shows one of such language extensions, LW-SC
(Lightweight-SC), where nested functions are added to SC-0 as a
language feature.

This system is helpful especially for programming language devel-
opers who want to prototype their implementation ideas rapidly and
also useful for C programmers who want to customize the language
easily as Lisp programmers usually do.

2. THE SC LANGUAGE SYSTEM
The SC language system, implemented in Common Lisp, deals
with the following S-expression-based languages:

• SC-0, the base SC language, and

• extended SC languages,

and consists of the following three kinds of modules:

• The SC preprocessor — includes SC files and handles macro
definitions and expansions,

• The SC translator — interprets transformation rules for trans-
forming SC code into another SC, and

• The SC compiler — compiles SC-0 code into C.

Figure 1 shows code translation phases in the SC language system.
An extended SC code is transformed into SC-0 by the SC transla-
tors, then translated into C by the SC compiler. Before each trans-
formation/translation is applied, preprocessing by an SC prepro-
cessor is performed. As the figure shows, a series of rule-sets can
be applied one by one to get SC-0 code. Extension implementers
write transformation rules for the SC translators to transform the
extended language into SC-0.

2.1 The SC Preprocessor
The SC preprocessor handles the following SC preprocessing di-
rectives to transform SC programs:

executable file

SC compiler C compiler

transformation rule-set B

extended SC-A code C code

SC preprocessor

SC translator

SC translator SC translator

SC preprocessor

SC preprocessor

SC preprocessor

extended SC-B code

extended SC-C code

transformation rule-set A

transformation rule-set C
SC-0 code

Figure 1: Code translation phases in the SC language system.

• (%include file-name)
corresponds to an#include directive in C. The filefile-
nameis included.

• (%defmacro macro-name lambda-list
S-expression1· · ·S-expressionn)

evaluated as adefmacro form of Common Lisp to define
an SC macro. After the definition, every list in the form of
(macro-name· · ·) is replaced with the result of the applica-
tion of Common Lisp’smacroexpand-1 function to the list.
The algorithm to expand nested macro applications complies
with the standard C specification.

• (%defconstant macro-name S-expression)
defines an SC macro in the same way as a%defmacro di-
rective, except that every symbol whicheqs macro-nameis
replaced withS-expressionafter the definition.

• (%undef macro-name)
undefines the specified macro defined by%defmacros or
%defconstants.

• (%ifdef symbol list1 list2)
(%ifndef symbol list1 list2)
If the macro specified bysymbolis defined,list1 is spliced
there. Otherwiselist2 is spliced.

• (%if S-expression list1 list2)
S-expressionis macro-expanded, then the result is evaluated
by Common Lisp. If the return valueeqls nil or 0, list2 is
spliced there. Otherwiselist1 is spliced.

• (%error string)
interrupts the compilation with an error messagestring.

• (%cinclude file-name)
file-namespecifies a C header file. The C code is compiled
into SC-0 and the result is spliced there. The SC program-
mers can use library functions and most of macros such as
printf, NULL declared/#defined in C header files1.

2.2 The SC Translator and Transformation
Rules

A transformation rule for the SC translator is given by the syntax:

1In some cases such a translation is not obvious. In particular, it is
sometimes impossible to translate#define macro definitions into
%defmacro or %defconstant. We discussed this problem before
in [1].

(function-name pattern parm2 · · · parmn)

-> expression

where a functionfunction-nameis defined as an usual Lisp func-
tion. When the function is called, the first argument is tested
whether it matches topattern. If matched,expressionis evaluated
by the Common Lisp system, then its value is returned as the result
of the function call. The parametersparm2 · · · parmn, if any, are
treated as usual arguments.

A list of transformation rules may include two or more rules with
the same function name. In that case, the first argument is tested
whether it matches to eachpattern in written order, and the result
of the function call is the value ofexpressionif matched.

It is permitted to abbreviate

(function-name pattern1 parm2 · · · parmn)

-> expression
. . .

(function-name patternm parm2 · · · parmn)

-> expression

(all the expressions are identical and onlypatterns are different
from each other) to

(function-name pattern1 parm2 · · · parmn)

. . .
(function-name patternm parm2 · · · parmn)

-> expression.

The pattern is an S-expression consisted of one of the following
elements:

(1) symbol
matches a symbol that iseq to symbol.

(2) ,symbol
matches any S-expression.

(3) ,@symbol
matches any list of elements longer than 0.

(4) ,symbol[function-name]
matches an element if the evaluation result of
(funcall #’function-name element) is non-nil.

(5) ,@symbol[function-name]

matches anlist (longer than 0) if the evaluation result of
(every #’function-name list) is non-nil.

The functionfunction-namecan be what is defined as above or an
usual Common Lisp function (a built-in function or what is defined
separately from transformation rules).

In evaluatingexpression, the special variablex is bound to the
whole matched S-expression and, in the cases except (1)symbol
is bound to the matched part in S-expression.

An example of such a function definition is as follows2:

(EX (,a[numberp] ,b[numberp]))

-> ‘(,a ,b ,(+ a b))

(EX (,a ,b))

-> ‘(,a ,b ,a ,b)

(EX (,a ,b ,@rem))

-> rem

(EX ,otherwise)

-> ’(error)

The application of the functionEX can be exemplified as follows:

(EX ’(3 8)) → (3 8 11)
(EX ’(x 8)) → (x 8 x 8)
(EX 8) → (error)
(EX ’(3)) → (error)
(EX ’(x y z)) → (z)

Each set of transformation rules defines one or more (in most cases)
function(s). A piece of extended SC code is passed to one of the
functions, which generates transformed code as the result.

Internally, transformation rules for a function are compiled into an
usual Common Lisp function definition (defun). The output can
be loaded by theload function, which enables the programmers
to easily test a part of a transformation rule-sets in an interactive
environment.

2.3 The SC Compiler and The SC-0 Language
We designed the SC-0 language as the final target language of trans-
formation by transformation rules. It has the following features:

• an S-expression based, Lisp like syntax,

• the C semantics; actually most of C code can be represented
in SC-0 in a straightforward manner3, and

• practical for programming.

Figure 2 shows an example of such an SC-0 program, which is
equivalent to the program in Figure 3.

2In consideration of symmetry between expressions and patterns,
it is more pertinent to describe‘(,a[numberp] ,b[numberp])
with a backquote. However, this notation rule leads inconvenience
that programmers have to put backquotes before most of patterns.
We preferred shorter descriptions and adopt the notation without
backquotes.
3except some features such as-> operators,for constructs, and
while constructs. These are implemented as language extensions
of the SC-0 using the SC language system itself.

(def (sum a n) (fn int (ptr int) int)
(def s int 0)
(def i int 0)
(do-while 1
(if (>= i n) (break))
(+= s (aref a (inc i))))

(return s))

Figure 2: An SC-0 program.

int sum (int* a, int n) {
int s=0;
int i=0;
do{
if (i >= n) break;
s += a[i++];
} while(1);
return s;

}

Figure 3: An equivalent C program to Figure 2.

In practice, the SC compiler is implemented as a transformation
rule-set described above, which specifies transformation from S-
expressions to a string (instead of S-expressions).

3. AN EXAMPLE OF A LANGUAGE EX-
TENSION — LW-SC

This section presents an example of an extended language using the
SC language system, named LW-SC. In LW-SC, nested functions
are added to SC-0 as a language feature. That is, programmers are
permitted to write function definitions within another function.

This extension is not only shown as an introduction of the SC lan-
guage system, but practical itself; those nested functions can access
a caller’s local variables directly without returning from the callee,
that enables us to implement many high-level services such as
check-pointing, multi-threading[2, 3] and garbage collection eas-
ily and elegantly by using LW-SC as an intermediate language.

The GNU C Compiler[4] (GCC) also provides such nested func-
tions as an extension to C. But LW-SC is more portable because it
is implemented by code transformation to C, while GCC’s nested
functions are implemented as an extended C compiler. More-
over, using nested functions of GCC causes high overhead for
the allocation and maintenance of them. We have overcome this
problem by implementing nested functions with “lightweight” clo-
sures (with some insignificant restrictions). Lightweight closures
causes higher invocation overhead but they have quite little alloca-
tion/maintenance overhead. As far as nested functions are basically
used for high-level services described above, the total overhead can
be reduced significantly since most such services allocate closures
frequently but only call them infrequently (e.g., to scan roots in
garbage collection). We detail the performance of LW-SC in Sec-
tion 3.4.

3.1 Language Specification
LW-SC has the following features added to SC-0.

• Nested function types:
(lightweight type-expression-list)
is added to the syntax fortype-expression

• Calling nested functions: In function-call expressions
((expression-list)), The type of the first expression is per-

(def (h i g) (fn int int (ptr (lightweight int int)))
(return (g (g i))))

(def (foo a) (fn int int)
(def x int 0)
(def y int 0)
(def (g1 b) (lightweight int int)
(inc x)
(return (+ a b)))

(= y (h 10 g1))
(return (+ x y)))

Figure 4: An LW-SC program.

mitted to be the nested function pointer type other than the
ordinary function pointer type.

• Defining nested functions:In the places where variable def-
initions are allowed except at the top-level, definitions of
nested functions are permitted in the following form:
(def (identifier-list)

(lightweight type-expression-list)
block-item-list)

(the almost same syntax as ordinary function defini-
tions’ except for the difference between keywordsfn and
lightweight.)

A nested function can access the lexically-scoped variables in the
allocation-time environment and its pointer can be used as a func-
tion pointer to indirectly call the closure. For example, Figure 4
shows an LW-SC program. Whenh indirectly calls the nested func-
tiong1, it can access a parametera and local variablesx, y sleeping
in foo’s frame.

As well as GCC (but differently from Lisp’s closure objects), nested
functions are valid only when the owner blocks are alive. Unlike
GCC, pointers to nested functions are not compatible with ones to
top-level functions. However, such limitations are insignificant for
the purpose of implementing high-level services mentioned above.

3.2 Transformation Strategy
We implemented LW-SC described above by using the SC language
system, that is, by writing transformation rules into SC-0, which is
finally translated into C.

3.2.1 Basic Ideas
The basic ideas to implement nested functions by translation are
summarized as follows:

• After transformation, all definitions of nested functions are
moved to be top-level definitions.

• To enable the nested functions to access local variables of
their owner functions, an explicit stack is employed in C
other than the (implicit) execution stack for C. The explicit
stack mirrors values of local variables in the execution stack,
and is referred to when local variables of the owner functions
are accessed.

• To reduce maintenance/allocation overhead, operations to fix
inconsistency between two stacks are delayed until nested
functions are actually invoked.

Function calls/returns and function definitions in LW-SC should be
appropriately transformed based on these ideas.

3.2.2 Transformation
LW-SC programs are translated in the following way to realize the
ideas described in Section 3.2.1.

(a) Each generated C program employs an explicit stack men-
tioned above on memory. This shows a logical execution stack,
which manages local variables, callee frame pointers, argu-
ments, return values of nested functions (of LW-SC) and return
addresses.

(b) Each function call to an ordinary top-level function in LW-SC
is transformed to the same function call in C, except that a spe-
cial argument is added which saves the stack pointer on the ex-
plicit stack. The callee firstly initializes its frame pointer with
the stack pointer, moves the stack pointer by its frame size, then
executes its body.

(c) Each nested function definition in LW-SC is moved to the top-
level in C. In the original place, a variable of a structure type,
which contains the pointer to the moved nested function and
the frame pointer of the owner function, is declared instead.

(d) Each function call to a nested function in LW-SC is translated
into the following steps.

1. Push arguments passed to the nested function and the
pointer to the structure mentioned above in (c) to the ex-
plicit stack.

2. Save the values of the all local variables and parameters,
and an integer corresponding to the current execution point
(return address) into the explicit stack, then return form the
function.

3. Iterate Step 2 until returned tomain. The values of local
variables and parameters ofmain are also stored to the ex-
plicit stack.

4. Referring to the structure which is pointed to by the pointer
pushed at Step 1 (the one in (c)), call the nested function
whose definition has been moved to the top-level in C. The
callee firstly obtains its arguments by popping the values
pushed at Step 1, then executes its body.

5. Before returning from the nested function, push the return
value to the explicit stack.

6. Reconstruct the execution stack by restoring the local vari-
ables, the parameters, and the execution points referring to
the values saved in the explicit stack at Step 3 (the values
may be changed during the call to the nested function) to
return to the caller of the nested function.

7. If necessary, get the return value of the nested function
pushed at Step 5 by popping the explicit stack.

A callee (nested functions) can access the local variables of its
owner functions through the frame pointers contained in the
structure that have been saved at Step 1

For example, Figure 5 shows the state transition of the two stacks4,
in the case of Figure 4, from the beginning of the execution to the
end of the first indirect call to a nested functiong1 (Each number

4“The C stack” here just states the set of local variables and pa-
rameters, whose values are stored not only in the stack memory but
also in registers.

explicit stack

main main main main

foofoo

main main

foo

h

foo

h

main main

foo

h

foo

h

main

foo

h

main

main

foo

h

main

g1

g1

main

foo

h

main

main

foo

h

main main

foo

h

main

foo

h

g1

: The stack memory that contains correct values of local variables.
: The structure that contains a pointer to functiong1(moved to the top level) and a pointer to the frame offoo.

: The return value ofg1.

1. 2., 3. 4.(Startg1)

5., 6. 7.

Executingmain Executingfoo Just beforeg1

explicit stack explicit stack

explicit stack explicit stack explicit stack

explicit stack explicit stack explicit stack

C stack C stack C stack

C stack C stack C stack

C stack C stack C stack

: The arguments tog1 and the pointer to the above structure.

g1 g1 g1

4.(Executingg1)

get the argument

return value

g1 g1

Figure 5: Details of an indirect call to a nested functiong1 in Figure 4.

in the figure corresponds to the step of the nested function call de-
scribed at (d)). Notice that the correct values of the local variables
are saved in the explicit stack during the execution of the nested
function and otherwise in the C stack.

3.3 Transformation Rules
To implement the transformation described above, we wrote trans-
formation rules. The entire transformation is divided into the fol-
lowing four phases (rule-sets) for simpleness and reusability of
each phase.

(1) The type rule-set: Adds type information to all theexpres-
sions of an input program.

(2) The temp rule-set: Transforms an input program in such a
way that no function call appears as a subexpression (except as
a right hand side of an assignment).

(3) The lightweight rule-set: Performs the transformation de-
scribed in Section 3.2.2.

(4) The untype rule-set: Removes the type information added
by thetype rule-set fromexpressions to generate correct SC-0
code.

The following subsections present the detail of these transformation
rule-sets.

3.3.1 Thetype rule-set
Transformation by thetemp rule-set and thelightweight rule-set
need information of all expressions. Thetype rule-set adds such
information. More concretely, it transforms eachexpressioninto
(the type-expression expression).

Figure 6 shows the (abbreviated) transformation rule-set.Tp0 is

applied to input program (e.g., in Figure 7) to get the transformed
program (e.g., in Figure 8).Tp1 receives declarations and renews
the dynamic variables which save the information about defined
variables, structures, etc.Tpe actually transforms expressions re-
ferring to the dynamic variables.

3.3.2 Thetemp rule-set
A function call appearing as a subexpression such as(g x) in
(f (g x)) makes it difficult to add some operations just be-
fore/after the function call. Thetemp rule-set makes such function
calls not appear.

Because some temporary variables are needed for the transforma-
tion, the definitions of those are inserted at the head of the function
body. For example, a program in Figure 10 is transformed to the
program in Figure 11 using this rule-set.

Figure 9 shows the (abbreviated)temp rule-set. The actual trans-
formations are performed byTmpe, which returns a 3-tuple of

• a list of the variable definitions to be inserted at the head of
the current function,

• a list of the assignments to be inserted just before the expres-
sion, and

• an expression with which the current expression should be
replaced.

Tmp andTmp2 combine the tuples appropriately and finallyTmp0
returns the transformed code.

3.3.3 Thelightweight rule-set
Now the transformation described in Section 3.2.2 is realized by
the lightweight rule-set. Figure 12 shows the (abbreviated)
lightweight rule-set which is related to the transformation of “or-
dinary function” calls and “nested function” calls.esp appearing
in the code is a special parameter which is added to each function
and saves the stack pointer of the explicit stack.efp is a special lo-
cal variable added to each function, which saves the frame pointer
of the function.Lwe-xfp transforms references to local variables
into references to the explicit stack.

“Ordinary function” calls and “nested function” calls can be stat-
ically distinguished referring to the functions’ type because of
the restriction that ordinary function types are incompatible with
nested function types.

The transformation of each operation is detailed as follows (the
rules unrelated function calls are omitted in the figure):

Calling ordinary functions The function call is performed as a
part of the condition expression ofwhile, where the stack
pointer is passed to the callee as an additional first argument.
If the callee procedure normally finished, the condition be-
comes false and the body ofwhile loop is not executed.
Otherwise, if the callee returned because of a “nested func-
tion” call, the condition becomes true. In the body ofwhile
loop, the values of local variables are saved to the explicit
stack, an integer that corresponds to the current execution
point is also saved to the explicit stack (efp->called-id),

(Tp0 (,@declaration-list))
-> (progn

...
(let (*str-alist* *v-alist* *lastv-alist*)
(mapcar #’Tp1 declaration-list)))

;;;;; declaration;;;;;
(Tp1 (,scs[SC-SPEC] ,id[ID] ,texp ,@init))
-> (progn

(push (cons id (remove-type-qualifier texp))
v-alist)

‘(,scs ,id ,texp ,@(mapcar #’Tpi init)))
(Tp1 (,scs[SC-SPEC] (,@id-list[ID])

(fn ,@texp-list) ,@body))
-> (let* ((texp-list2

(mapcar #’rmv-tqualifier texp-list))
(*v-alist* (cons (cons (first id-list)

‘(ptr (fn ,@texp-list2)))
v-alist))

(new-body nil))
(let ((b-list

(cmpd-list (cdr id-list)
(cdr texp-list2))))

(setq new-body
(let((*v-alist* (append b-list *v-alist*))

(*str-alist* *str-alist*))
(mapcar #’Tpb body))))

‘(,scs (,@id-list)
(fn ,@texp-list),@new-body))

...
(Tp1 ,otherwise)
-> (error "sytax error")
;;;;;;; body ;;;;;;
(Tpb (do-while ,exp ,@body))
-> (switch ,(Tpe exp)

,@(let ((*v-alist* *v-alist*)
(*str-alist* *str-alsit*))

(mapcar #’Tpb body)))
...
(Tpb ,otherwise)
-> (let ((expression-stat (Tpe otherwise)))

(if (eq ’$not-expression expression-stat)
(Tp1 otherwise)

expression-stat))
;;;;; expression;;;;;
(Tpe ,id[ID])
-> ‘(the ,(assoc-vartype id) ,id)
...
(Tpe (ptr ,exp))
-> (let ((exp-with-type (Tpe exp)))

‘(the (ptr ,(cadr exp-with-type))
(ptr ,exp-with-type)))

(Tpe (mref ,exp))
-> (let* ((exp-with-type (Tpe exp))

(exp-type (cadr exp-with-type)))
‘(the ,(deref-type exp-type)
(mref ,exp-with-type)))

(Tpe (,fexp[EXPRESSION] ,@arg-list))
-> (let* ((fexp-with-type (Tpe fexp))

(fexp-type (cadr fexp-with-type))
(type-fn (cadr fexp-type)))

‘(the ,(cadr type-fn)
(call (the ,type-fn

,(caddr fexp-with-type))
,@(mapcar #’Tpe arg-list))))

(Tpe ,otherwise)
-> ’$not-expression

Figure 6: The type rule-set (abbreviated).

;;;; Due to thetemp rule-set, a function call expression must be appeared in either of the following form as a statement expression:
;;;; * (= variable function-call-expression)
;;;; * (= function-call-expression).

;;; ‘‘Ordinary function’’ call
(Lwe (the ,texp0 (= (the ,texp1 ,id) (the ,texp (call (the (fn ,@texp-list) ,exp-f) ,@exp-list)))))
(Lwe (the ,texp (call (the (fn ,@texp-list) ,exp-f) ,@exp-list)))
-> (let (...)

...
(let* (...)
(list nil decl-list

(cons ’(= new-esp esp) prev-list)
‘(while ‘(and (== (= ,(Lwe-xfp ‘(the ,texp1 ,id))

(call ,fexp new-esp ,@(cdr tmpid-list)))
(special ,texp0))

(!= (= (fref efp -> tmp-esp) (mref-t (ptr char) esp))))
;; Save the values of local variables to the frame.
,@(make-frame-save *current-func*)
...
;; Save the current execution point.
(= (fref efp -> call-id)
,(length (finfo-label-list *current-func*)))
;; Return from the current function (In

main, call the nested function here instead of the following steps).
,(make-suspend-return *current-func*)
;; Continue the execution from here when reconstructing the execution stack.
(label ,(caar (push (cons (generate-id "L_call" *used-id-list*) nil)

(finfo-label-list *current-func*)))
nil)
;; Restore local variables from the explicit stack.
,@(make-frame-resume *current-func*)
...
(= new-esp (+ esp 1))))))

;;; ‘‘Nested function’’ call
(Lwe (the ,texp0 (= (the ,texp1 ,id) (the ,texp (call (the (lightweight ,@texp-list) ,exp-f) ,@exp-list)))))
(Lwe (the ,texp (call (the (lightweight ,@texp-list) ,exp-f) ,@exp-list)))
-> (let (...)

...
(list ’() fp-decl ’()

‘(begin
...
(= argp (aligned-add esp (sizeof (ptr char))))
;; Push the arguments passed to the nested function
,@(mapcar (compose #’(lambda (x) ‘(push-arg ,(second x) ,(third x) argp))

#’Lwe-xfp)
(reverse exp-list))

;; Push the structure objcect that corresponds to the frame of the nested function to the explicit stack.
(= (mref-t (ptr closure-t) argp) ,xfp-exp-f)
...
;; Save the values of local variables to the frame.
,@(make-frame-save *current-func*)
(= (fref efp -> argp) argp)
(= (fref efp -> tmp-esp) argp)
;; Save the current execution point.
(= (fref efp -> call-id)
,(length (finfo-label-list *current-func*)))

;; Return from the current function (Inmain, call the nested function here instead of the following steps).
,(make-suspend-return *current-func*)
;; Continue the execution from here after the function call finishes.
(label ,(caar (push (cons (generate-id "L_call" *used-id-list*) nil)

(finfo-label-list *current-func*)))
nil)

;; Restore local variables from the explicit stack.
,@(make-frame-resume *current-func*)
;; Get the return value (if necessary).
,@(when assign-p

‘((= ,(Lwe-xfp ‘(the ,texp1 ,id))
(mref-t ,texp1 (fref efp -> argp))))))))

Figure 12: Thelightweight rule-set (abbriviated).

and then the current function temporarily exits. This function
is re-called when reconstructing the execution stack after the
execution of the nested function. Then the control is trans-
ferred to thelabel that is put next to thereturn by goto
statements which are added in the head of the function. Then
the values of local variables are restored form the explicit
stack and the function in the condition expression ofwhile is
re-called. The assignment(= new-esp (+ esp 1)) at the
end ofwhile block set a flag at the LSB of the explicit stack
pointer that indicates reconstructing the execution stack.

Calling Nested functions The arguments passed to the nested
function and the structure that contains the nested func-
tion pointer and the frame pointer of its owner function are
pushed to the explicit stack. Then, like an “ordinary func-
tion” call, the values of local variables and the executing
point are saved, the current function exits, and the execu-

tion point is restored bygoto after the procedure for calling
nested function. Then the values of local variables are re-
stored and the return value of the nested function is taken
from the top of the explicit stack, if necessary.

Returning from functions returns from ordinary function need
no transformation. On the other hand,returns from nested
functions must be transformed to push the return value to
the explicit stack, and just toreturn 0 to indicate that the
execution of the function is normally finished.

Function definitions The following steps are added before the
functions’ body:

• initializing the frame pointer of the explicit stack (efp)
and the stack pointer (esp),

• judging whether reconstruction of the execution stack is
required or not and, if so, executinggoto to thelabel

(def (g x) (fn int int)
(return (* x x)))

(def (f x) (fn double double)
(return (+ x x)))

(def (h x) (fn char double)
(return (f (g x))))

Figure 7: An example transformation by thetype rule-set (be-
fore).

(def (g x) (fn int int)
(return (the int

(* (the int x) (the int x)))))

(def (f x) (fn double double)
(return (the double

(+ (the double x) (the double x)))))

(def (h x) (fn char double)
(return (the double

(call (the (fn double double) f)
(the int (call (the (fn int int) g)

(the double x)))))))

Figure 8: An example transformation by thetype rule-set (af-
ter).

corresponding toefp->call-id, and

• popping parameters from the explicit stack, in the case
of nested functions.

Other transformations are also needed such as adding the pa-
rameteresp that receives the explicit stack pointer, adding
some local variable definitions, and adding the structure def-
inition that represents the function’s frame in the explicit
stack and is referred to byefp.

Though more transformations are needed, we omit the details due
to the space limitation.

3.3.4 Theuntype rule-set
The output code transformed by thelightweight rule-set is not
correct SC-0 code because it contains the type information. The
untype rule-set removes such information and generate correct
SC-0 code. The rule-set is very simple; only needs to search
(the . . .) forms recursively and to remove the type information.
Figure 13 shows the entireuntype rule-set.

3.4 Performance
We employed several programs with nested functions and com-
pared them with the corresponding plain C programs. We measured
the performance on 1.05GHz UltraSPARC-III and 3GHz Pentium 4
using GCC with-O2 optimizers. Table 1 summarizes the results of
performance measurements, where “C” means the plain C program,
and “GCC” means the use of GCC’s nested functions.

GCC’s implementation of nested functions causes high mainte-
nance/allocation overhead for the following reasons:

• GCC implements taking the address of a nested function us-
ing a technique calledtrampolines[5]. Trampolines are code
fragments generated on the stack at runtime to indirectly en-
ter the nested function with a necessary environment. The

(Tmp0 (,@decl-list))
->(progn

...
(let ((*used-id* (get-all-id x))

(*prev-continue* nil))
(mapcar #’Tmp1 x)))

;;;; declaration;;;;;
(Tmp1 (,scs[SC-SPEC]

(,@id-list[ID]) (fn ,@texp-list) ,@body))
-> (let* ((tmpbody (Tmp2 body))

(newdecl (first tmpbody))
(newbody (second tmpbody)))

‘(,scs (,@id-list)
(,fntag ,@texp-list) ,@newdecl ,@newbody))

...
;;;;; body ;;;;;
(Tmp2 (,@item-list))
-> (let* ((tmpitemlist (mapcar #’Tmp item-list))

(decl-list (apply #’append
(mapcar #’first tmpitemlist)))

(prev-stat (apply #’append (mapcar
#’(lambda (x) ‘(,@(second x) ,(third x)))

tmpitemlist))))
(list decl-list prev-stat))

(Tmp (do-while ,exp ,@body))
->(let* ((tmpexp (Tmpe exp))

(*prev-continue* (second tmpexp))
(tmpbody (Tmp2 body)))

(list (append (first tmpexp) (first tmpbody))
nil

(do-while ,(third tmpexp)
,@(second tmpbody) ,@*prev-continue*)))

(Tmp (return ,@exp))
-> (if (null exp)

‘(nil nil (return))
(let ((tmpexp (Tmpe (car exp))))
‘(,(first tmpexp) ,(second tmpexp)
(return ,(third tmpexp)))))

...
(Tmp ,otherwise)
->(let ((tmpe-exp (Tmpe otherwise)))

(if (eq ’$not-expression tmpe-exp)
(list (list (Tmp1 otherwise)) nil)
tmpe-exp))

;;;;; expression;;;;;
(Tmpe (the ,texp (call ,fexp ,@arg-list)))
-> (case texp

((void)
...)

(otherwise
(let*
((tmpexps (comb-list (mapcar #’Tmpe arg-list)))
(tempid (generate-id "tmp"))
(tmp-decl1 ‘(def ,tempid ,texp))
(tmp-decl
(append (first tmpexps) ‘(,tmp-decl1)))
(tmp-set1 ‘(the ,texp (= (the ,texp ,tempid)
(the ,texp (call ,fexp ,@(third tmpexps))))))
(tmp-set
(append (second tmpexps) ‘(,tmp-set1))))

(list tmp-decl tmp-set ‘(the ,texp ,tempid)))))
(Tmpe (the ,texp (+ ,exp1 ,exp2)))
-> (let ((op (caaddr x))

(t-exp1 (Tmpe exp1)) (t-exp2 (Tmpe exp2)))
(list ‘(,@(first t-exp1) ,@(first t-exp2))

‘(,@(second t-exp1) ,@(second t-exp2))
‘(the ,texp (,op ,(third t-exp1)

,(third t-exp2)))))
...

Figure 9: The temp rule-set (abbriviated).

(def (g x) (fn int int)
(return
(the int

(+ (the int
(= (the int x) (the int 3)))
(the int

(call (the (fn int int) g)
(the int x)))))))

Figure 10: An example transformation by thetemp rule-set (be-
fore).

(def (g x) (fn int int)
(def tmp1 int)
(def tmp2 int)
(the int

(= (the int tmp1)
(the int

(= (the int x) (the int 3)))))
(the int

(= (the int tmp2)
(the int

(call (the (fn int int) g)
(the int x)))))

(return
(the int

(+ (the int tmp1) (the int tmp2)))))

Figure 11: An example transformation by thetemp rule-set (af-
ter).

(UTp0 ,decl-list)
-> (UTp decl-list)
(UTp (the ,texp ,exp))
-> (Utp exp)
(UTp (call ,@exp-list))
-> (mapcar #’Utp exp-list)
(UTp (,@lst))
-> (mapcar #’UTp lst)
(UTp ,otherwise)
-> otherwise

Figure 13: Theuntype rule-set.

runtime code generation incurs high overhead, and for some
processors like SPARC, it is necessary to flush some instruc-
tion caches for the runtime-generated trampoline code.

• The local variables generally may get registers if the owner
function has no nested function. But an owner of GCC’s
nested functions keeps the values of these variables in the
stack for the nested functions to access them usually via a
static chain. Thus, the owner function must perform mem-
ory operations to access these variables, which incurs high
maintenance overhead.

LW-SC overcomes the former problem by translating the nested
function pointer to the tuple of the ordinary function pointer and
the frame pointer, and the latter by saving the local variables to the
explicit stack lazily (only on call to nested functions).

Actually LW-SC shows a good performance on SPARC because
overhead for flushing instruction caches is significant. On the other
hand, LW-SC does not show good performance on Pentium 4. In
fib(36), overhead for additional operations in LW-SC is emphasized
since there is little local variable access in thefib function.

Table 1: Performance Measurements.

Elapsed Time in seconds
S:SPARC (relative time to plain C)
P:Pentium C GCC LW-SC

BinTree S 0.251 0.335 0.274
copying (1.00) (1.33) (1.09)

GC P 0.149 0.170 0.152
(1.00) (1.14) (1.02)

Bin2List S 0.415 0.467 0.423
copying (1.00) (1.13) (1.02)

GC P 0.144 0.145 0.151
(1.00) (1.01) (1.05)

fib(36) S 0.341 1.518 0.412
Check (1.00) (4.45) (1.21)

Pointing P 0.0702 0.114 0.146
(1.00) (1.62) (2.08)

Table 2: The number of lines of each transformation rule-set.

Lines
Thetype rule-set 450
Thetemp rule-set 340

Thelightweight rule-set 780
Theuntype rule-set 10

3.5 Implementation Cost
Table 2 shows the number of lines of each transformation rule-set.
Because a program to be transformed is given as S-expressions, the
transformation rules can be written intuitively and easily. It is easy
to test transformation rules, too. For example, an input for thetemp

rule-set can be written in a simple S-expression and the output is
also easily checked. In addition, thetype, temp anduntype rule-
set can often be reused when implementing some other extensions.

3.6 Debugging SC Programs
When SC programmers debug their SC programs, they may read
the generated C code but it is usually too complicated. We will
solve this problem by making transformation rules weave debug-
ging code into their output.

4. RELATED WORK
4.1 Other Language Extensions
There exists many useful extensions to C such as Cilk[6] and
OpenMP[7], but their purpose is to implement their own exten-
sions, not to make a framework for general language extensions.

Lisp/Scheme is easy to be extended by transformation and to be
written by humans. Furthermore, there exists compilers from their
languages to C[8, 9]. But they are not suitable for describing low
level operations such as pointer operations. From another point
of view, the SC language system applies the advantages of Lisp
in extensibility to C with preservation of its ability of low-level
operations.

4.2 Lower-Level Scheme
Pre-Scheme[10] is a dialect of Scheme, which lacks some features
such as garbage collection and full proper tail-recursion but pre-
serves the other Scheme’s advantages such as higher order proce-
dures, interactive debugging, and macros and gives low-level ma-
chine access of C. Our approach is to support language develop-

ers to implement language extension rather than to support pro-
grammers for low-level programming, using some advantages of
Lisp/Scheme.

4.3 Reflection
Reflectionis to manipulate behaviors of a running program by refer-
ring to or modifying meta-level information as a first-class object,
which enables us to extend a program dynamically. Although it is
very powerful in extensibility, it causes great decrease of perfor-
mance in many implementations that such information is kept by
an interpreter. Most implementation[11] overcomes this problem
by restricting the extension targets.Compile-time reflection[12, 13]
realizes such extension by transforming programs in compile-time,
which is similar to our approach. But we provide more generic
framework to transform programs such as from LW-SC into SC-0.

4.4 Aspect Oriented Programming
Aspect Oriented Programming[14] (AOP) is a programming
paradigm to handle a cross-cutting concern in one place. In gen-
eral, it is implemented by inserting a method defined as anadvice
into join pointsspecified in a program. The SC language system
also can be used to implement this feature defining such insertion
by adequate transformation rules.

4.5 Pattern-matching
There exists many implementations of pattern-matching utilities on
S-expressions[15]. But the patterns which correspond to,@symbol
and,@symbol[function-name] are not so popular.

In most of implementations, the form?symbolis used as a pat-
tern which corresponds to our,symbol. We adopted more intuitive
backquote-macro-like notations in consideration of a symmetry be-
tween patterns and expressions.

4.6 Another S-Expression Based C
Symbolic C Expressions[16] (Scexp) is another S-expression based
C language. It emphasizes usefulness of writing C code with Lisp
macros. However, it is not intended to be a base for language ex-
tensions.

5. CONCLUSION AND FUTURE WORK
We proposed a scheme for extending the C language, where an
S-expression based extended language is translated into a C lan-
guage with an S-expression syntax. In this scheme, we can extend
C at lower implementation cost because we can easily manipulate
S-expressions using Lisp and transformation rules can be written
intuitively. We also presented an practical example of a language
extension which adds nested functions to C.

Future work includes a way how to apply (independently devel-
oped) two or more extensions. We will also implement high-level
languages (e.g., with a garbage collected heap) based on LW-SC.

6. REFERENCES
[1] Hiraishi, T., Yasugi, M. and Yuasa, T.: Effective Utilization

of Existing C Header Files in Other Languages with
Different Syntaxes,7th Workshop on Programming and
Programming Languages (PPL2005)(2005). (in Japanese).

[2] Hiraishi, T., Li, X., Yasugi, M., Umatani, S. and Yuasa, T.:
Language Extension by Rule-Based Transformation for
S-Expression-Based C Languages,IPSJ Transsactions on

Programming, Vol. 46, No. SIG1(PRO 24), pp. 40–56
(2005). (in Japanese).

[3] Tabata, Y., Yasugi, M., Komiya, T. and Yuasa, T.:
Implementation of Multiple Threads by Using Nested
Functions,IPSJ Transsactions on Programming, Vol. 43,
No. SIG 3(PRO 14), pp. 26–40 (2002). (in Japanese).

[4] Stallman, R. M.: Using and Porting GNU Compiler
Collection (1999).

[5] Breuel, T. M.: Lexical Closures for C++, Usenix
Proceedings, C++ Conference(1988).

[6] Frigo, M., Leiserson, C. E. and Randall, L.: The
Implementation of the Cilk-5 Multithreaded Language,ACM
SIGPLAN Notices, Vol. 33, No. 5, pp. 212–223 (1998).

[7] PHASE Editorial Committee: Omni: OpenMP compiler
project.http://phase.hpcc.jp/Omni/.

[8] Yuasa, T.: Design and Implementation of Kyoto Common
Lisp, Journal of Information Processing, Vol. 13, No. 3, pp.
284–293 (1990).

[9] Joel, F. B.: SCHEME->C a Portable Scheme-to-C Compiler,
WRL Research Report(1989).

[10] Kelsey, R.: Pre-Scheme: A Scheme Dialect for Systems
Programming.

[11] Chiba, S. and Masuda, T.: Designing an Extensible
Distributed Language with a Meta-Level Architecture,In
Proceedings of European Conference on Object Oriented
Programming (ECOOP), LNCS 707, pp. 482–501 (1993).

[12] Chiba, S.: A Metaobject Protocol for C++, ACM Sigplan
Notices, Vol. 30, No. 10, pp. 285–299 (1995).

[13] Tatsubori, M., Chiba, S., Killijian, M.-O. and Itano, K.:
OpenJava: A Class-based Macro System for Java,Reflection
and Software Engineering(Cazzola, W., Stroud, R. J. and
Tisato, F.(eds.)), LNCS 1826, Springer-Verlag, pp. 119–135
(2000).

[14] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M. and Irwin, J.: Aspect-Oriented
Programming,Proceedings European Conference on
Object-Oriented Programming(Akşit, M. and Matsuoka,
S.(eds.)), Vol. 1241, Springer-Verlag, Berlin, Heidelberg, and
New York, pp. 220–242 (1997).

[15] Queinnec, C.: Compilation of Non-linear, Second Order
Patterns on S-expressions,PLILP’90, LNCS 456, pp.
340–357 (1990).

[16] Mastenbrook, B.: scexp — Symbolic C Expressions (2004).
http://www.unmutual.info/software/scexp/.

