
Xcrypt on Lisp: A Scripting System for Job Level Parallel
Programming in Lisp

Tasuku Hiraishi
Academic Center for

Computing and Media Studies,
Kyoto University

Sakyo Kyoto, JAPAN 606-8501
tasuku@media.kyoto-

u.ac.jp

Masaru Ueno
Graduate School of

Informatics,
Kyoto University

Sakyo Kyoto, JAPAN 606-8501
m.ueno@sys.i.kyoto-

u.ac.jp

Tatsuya Abe
RIKEN Advanced Institute for

Computational Science
Kobe, JAPAN 650-0047

abet@riken.jp

Motoharu Hibino
Graduate School of

Informatics,
Kyoto University

Sakyo Kyoto, JAPAN 606-8501
m.hibino@sys.i.kyoto-

u.ac.jp

Takeshi Iwashita
Academic Center for

Computing and Media Studies,
Kyoto University

Sakyo Kyoto, JAPAN 606-8501
iwashita@media.kyoto-

u.ac.jp

Hiroshi Nakashima
Academic Center for

Computing and Media Studies,
Kyoto University

Sakyo Kyoto, JAPAN 606-8501
h.nakashima@media.kyoto-

u.ac.jp

ABSTRACT
For the effective use of resources in large-scale parallel com-
puting environments such as supercomputers, we often use
job level parallelization, that is, plenty of sequential/parallel
runs of a single program with different parameters. For
describing such parallel processing easily, we developed a
scripting system named Xcrypt, based on Perl. Using Xcrypt,
even computational scientists who are not familiar with script
languages can perform typical job level parallel computa-
tions such as parameter sweeps by using a simple declarative
description. In this paper, we propose a Common Lisp front-
end for Xcrypt. This enables us to write scripts to perform
various job level parallel executions and pre/post-operations
that generate/analyze inputs/results of jobs using various
powerful features of Common Lisp such as list processing
and REPL. We realized this front-end by implementing a
RPC mechanism between Lisp and Perl processes which sup-
ports remote object references and calling unnamed func-
tions defined in the other language. This implementation
design can be applied easily when realizing Xcrypt fornt-
ends for other languages other than Lisp.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks, Modules, packages

General Terms
Languages, Design

1. INTRODUCTION
We need to parallelize computations to use large-scale com-
puting resources effectively. We can consider parallelization
not only at the program level but also the job level. The
program level parallelization means parallelization inside a
program using languages and/or libraries such as OpenMP,
MPI, Cilk, Intel TBB, parallelization libraries for Lisp, and
so on. On the other hand, job level parallelization means
running a single with different parameters in parallel.

For achieving coarse-grained parallelism, job level paralleliza-
tion can be used since it is easy to implement. Furthermore,
computing systems with a parallelism greater than 1M are
emerging; in such systems, it is difficult or almost impossible
to write a single parallel program that runs efficiently using
all the computing resourses. However, we can use such sys-
tems effectively by using two layers of parallelism at both
the program level and job level. For example, in car body
design, they have to try crash simulations plenty of times by
executing a single simulation program with many sets of ini-
tial parameters. In this case, they can not only parallelize
the simulation program to speed up each simulation com-
putation but also run plenty of simulation computations in
parallel. Parameter sweeps and optimal parameter searches
for drug discovery and static software automatic tuning [1,
2] are other real examples of job level parallel processing.

In most of real supercomputer systems, including K Com-
puter and the supercomputer in the Kyoto University, com-
puting resources are managed by a batch scheduler such as
NQS [3], LSF [4], SGE [5], or Torque [6]. In order to ex-
ecute a program in such systems, we have to request the
batch scheduler to execute it by submitting a job to a job
queue. When the scheduler detects sufficient available com-
puting resources to execute the job1, it assigns the job to the

1The batch scheduler consider amount of free computing
resources, a mount of resources the user can use, fairness
among all the users of the system, and etc.

#!/bin/bash
#QSUB -ug mygroup
#QSUB -q myqueue
#QSUB -A p=1:t=1:c=1:m=3840M

./a.out 10

Figure 1: An example of a job script for the super-
computer in Kyoto University.

resources and execute it. Of course, we can submit multiple
jobs simultaneously and they can be executed in parallel as
far as computing resources remain.

Because we can impose management of computing resources
on the back-end scheduler in such environments, it seems to
be easy to write a job level parallel program in pre-existing
script languages such as Perl, Ruby or Python, regarding a
job in batch schedulers as a parallelization unit. However,
there remain many tasks that are hard to implement, such
as submitting jobs and waiting for them to be finished, ex-
tracting necessary parts from output files to analyze results,
and handling for jobs that are abnormally finished.

The most significant issue is to implement interfaces to var-
ious kind of batch schedulers. For example, in order to
submit a job to execute “./a.out 10” to a job queue in
the supercomputer in the Kyoto University, we have to pre-
pare a script file called a job script as Figure 1, which de-
scribes queue and group names (depending on account in-
formation), amount of computing resources used by the job
(memory size and a number of nodes, hardware threads, and
cores), and shell commands to be executed. If this script is
saved as “aout.sh,” we can submit a job by a shell com-
mand “qsub aout.sh.” If we want to execute a.out with
another command line argument, we have to prepare an-
other job script and execute qsub command again. To make
matters worse, formats of job scripts are different among
supercomputer systems. It is not difficult to implement a
job script generator for each system, but the situation that
each supercomputer user implements his/her own generator
is undesirable in consideration of the overall productivity.
Note that these issues are especially serious for computa-
tional scientists who are not familiar with script languages.

To solve these problems, we have developed a scripting sys-
tem named Xcrypt [7], based on Perl. This system provides
various additional supports that facilitate the easy descrip-
tion of job level parallel processing.

In Xcrypt, a job is abstracted as a job object and we can
write a job submission simply as an asynchronous procedure
call with the job objects given as arguments. This enables
us to seamlessly glue job executions that are components
of a parallel processing job. Differences in interfaces among
systems are handled by (Perl-based) configuration scripts,
which are written separately from Xcrypt scripts. In addi-
tion, Xcrypt has a mechanism to add various useful features,
such as limiting the number of simultaneously running (or
queued) jobs, as modules.

At first, we developed Xcrypt based on Perl. However, some

users would like to write such job level parallel execution in
other scripting languages. Therefore we started a project to
develop a multilingualization support for Xcrypt.

In this paper, we introduce a Common Lisp front-end for
Xcrypt as a part of the multilingualization support. It en-
ables us to write job level parallel executions with various
powerful features of Common Lisp including higher-order
functions, macros, and REPL.

We know that there are few Lisp programmers among su-
percomputer users and it will be hard to let them to use Lisp
rather than other scripting languages such as Python, Perl,
and Ruby. But we expect that Lisp programmers who are
not familiar with supercomputers can perform large scale
parallel computations easily using our system.

The contribution of this paper is as follows.

• We propose a scripting system to perform job level par-
allel computation on supercomputers, based on Com-
mon Lisp. It enables us to write various job level paral-
lel executions easily using both the original Xcrypt fea-
tures and various powerful features of Common Lisp.

• We designed and implemented a remote procedure call
mechanism between Lisp and Perl, which is developed
to realize the Lisp version of Xcrypt. Our RPC imple-
mentation supports callback functions and remote ob-
ject references. This implementation can be used for
the general purpose of using Perl features from Lisp
and vice versa. In addition, this implementation de-
sign can be applied when realizing Xcrypt fornt-ends
for other languages other than Lisp.

2. OVERVIEW OF XCRYPT
This section explains the important features of (the Perl
version of) Xcrypt added to Perl.

2.1 Declaration of Used Modules
An Xcrypt script should begin with a declaration of the
modules to be included, as follows:

use qw(module-name1 module-name2 . . . core);

Note that the core module realizes the core feature of job
objects and must be included in the module list.

2.2 Functions for Handling Jobs
2.2.1 Creating job objects
To create job objects, the prepare function is used as fol-
lows:

@jobs = prepare (%template)

%template is a job template object defined as a hash object
that contains information on jobs. Table 1 shows important
keys that a template object should contain. A key name
prefixed with JS_ implies that the corresponding value is re-
ferred to by a batch scheduler configuration script and passed
to the underlying scheduler by following its interface.

Values of before, after, before_in_job, and after_in_job

should be “code references” (anonymous functions or refer-
ences to predefined named functions). Before and after are
procedures that are invoked before job submission and after
job completion, respectively. These procedures are executed
in the Xcrypt process. On the other hand, before_in_job
and after_in_job are procedures executed in Perl processes
run during the job execution. When these functions are
defined, Xcrypt serializes values of user-defined global vari-
ables and the job object to be submitted, and then creates
Perl scripts. These scripts define the global variables whose
values are to be serialized and then invoke before_in_job

or after_in_job. These members are useful for preventing
preprocessings and postprocessings (such as creating input
files and analyzing output files) from being bottlenecks when
plenty of jobs are submitted. We minimized the loss of pro-
grammability by allowing some of the variables defined in
Xcrypt to be read in these procedures. We employed the
Dump::Dumper [8] CPAN module for serialization; the mod-
ule can serialize not only scalar values but also arrays, hash
variables, and functions.

The created job objects basically inherit the members of the
template object and their values. In addition, the job objects
have additional (private or public) members and methods,
such as the member that indicates the current state of a job.

When the input template object contains RANGEn as its mem-
ber, prepare creates multiple job objects. In this case, the
created job objects are given different ids by postfixing se-
quential numbers: for example, the return value of prepare
(’id’=>’example’, ’RANGE0’=>[1..100]) is an array of job
objects whose ids are example1–example100. When the val-
ues of the members RANGE0, RANGE1, . . . of the template ob-
ject are arrays with lengths n1, n2, . . . respectively, (n1 ×
n2 × . . .) job objects are created.

We can ensure that the member values of the created job
objects are different from each other by postfixing @ to the
member names, such as arg0_0@, and we set a function to
the corresponding member value; each member value of the
created job objects is the return value of a given function.
In the function body, the assigned element of RANGEn can
be referred to as the n-th argument (can be referred to by
$VALUE[n]).

Note that we provided the RANGE feature because a param-
eter sweep is one of the most typical usages of Xcrypt and
there are many users who are not familiar with a program-
ming style using map functions; since Perl provides the map
function, (the Perl version of) Xcrypt users can write a pa-
rameter sweep using it.

2.2.2 Submitting jobs
We can submit jobs by using the submit function as follows:

submit (@jobs)

@jobs should be an array of job objects created by prepare.
All the jobs contained in the array are submitted.

Details of the submit function are as follows. The submit

function creates a thread, called job thread, for each job ob-

ject. The task of a job thread is as follows:

1. Invoke the user-defined before.

2. Invoke all the before methods defined in the declared
modules in use, in the left-to-right order.

3. Invoke the start method defined for the leftmost mod-
ule among the used modules. The start method in the
core module generates a job script for the batch sched-
uler by referring to configuration scripts, and it sub-
mits a job by using the command for submission pro-
vided by the underlying batch scheduler (e.g., qsub).

4. Wait for the submitted job to be completed.

5. Invoke all the after methods defined in the declared
modules in use, in the right-to-left order.

6. Invoke the user-defined after.

The execution of submit itself is completed after the creation
of job threads.

Job threads are created as lightweight threads by the using
Coro CPAN module [9], which enables us to create thou-
sands of threads at a reasonable memory/time cost.

2.2.3 Waiting for finishing jobs
We can wait for the jobs to be finished by using the sync

function:

sync (@jobs)

It waits for all the job threads corresponding to the job ob-
jects included in the array @jobs to be finished.

2.3 Extension Modules
When only the core module is used, all the job objects
created by prepare are instance objects of the core class.
Developers of Xcrypt libraries can extend Xcrypt by extend-
ing the core class. End users can use such extensions only
by adding the name of the extended class in use.

The manner of implementing extension modules is based
on the manner in which class extension is carried out in
object-oriented Perl programming. In addition, in Xcrypt,
a method named new, before, start, or after has special
meaning, as explained in the previous section.

We can extend the new and start methods to extend or
modify the procedures of creating job objects and submit-
ting them, respectively. We can also define the before/after
methods as additional hooks that are invoked before/after
job execution.

2.4 Implementation
Almost the entire Xcrypt system is implemented as Perl
modules. When Xcrypt is executed with an Xcrypt script, it
performs simple translations of the script and executes Perl
with the translated script. The translation includes the ad-
dition of declarations, some necessary global variables, and
top-level statements to create two background threads: one

Table 1: Important members of job template objects

Name
(n, m: integers equal to or greater than 0) Meaning

id a string to identify the job
exen a command line to be executed as the job execution

(exe0, exe1, . . . , exen are executed in this order)
argn_m The m-th command line option of exen
JS_cpu # of CPUs required for the job
JS_node # of nodes required for the job
JS_queue name of the queue to which the job is submitted
before a procedure invoked before submitting the job
after a procedure invoked after the job is completed
before_in_job a procedure invoked just before exe0
after_in_job a procedure invoked immediately after all the exens
RANGEn extraction ranges from the template

for communicating with jobs and the user interface and the
other for monitoring the status of jobs.

When the submit function is called, Xcrypt generates a job
script file as follows and execute the qsub command using
it.

#!/bin/bash

#QSUB -ug groupname
#QSUB -q queuename
#QSUB -A amount of computing resources

inventory_write ID running

(Execute Perl to invoke before_in_job)
./a.out0 arg0_0 arg0_1 . . . # exe0

· · ·
./a.outn argn_0 argn_1 . . . # exen
(Execute Perl to invoke after_in_job)
inventory_write ID done

The inventory_write command notifies Xcrypt running on
hostname that the status of job whose id is ID has been
“running” or “done,” by using some communication method
(such as TCP/IP communication or creating a file in NFS).
Then the Xcrypt process can detect the notification and
update the job’s status.

As mentioned in Section 1, Xcrypt have to generate job
scripts in different format when it is executed in a differ-
ent supercomputer system. Refer to [7] for how this issue is
solved.

2.5 Example
Figure 2 shows a simple Perl-based Xcrypt script that sub-
mits 5000 jobs that execute the single program a.out; each
job uses a different command line arguments.

Because the template has the member RANGE0 with the value
[1..5000], prepare generates 5000 job objects with ids
psweep1–psweep5000. The command line to be executed
in a job is defined by exe@. Because command line argu-
ments (input and output file names) differ from job to job,
the member name is postfixed by “@” and its value is a
function. In the function body, $VALUE[0] binds the corre-
sponding value in RANGE0 (1–5000).

use base qw(limit core); # use the limit module
limit::initialize(10);

%template = (
’id’ => ’psweep’, # job’s ID
’RANGE0’ => [1..5000], # extraction range
’exe0@’
=> sub {"./a.out input$VALUE[0] output$VALUE[0]"}

’after_in_job’
=> sub { print "$_[0]->{exe0} is done."}

’after’
=> sub { print "Job $_[0]->{id} finished."}

);
prepare_submit_sync(%template); is also allowed
@jobs = prepare (%template);
submit (@jobs);
sync (@jobs);

Figure 2: Perl-based Xcrypt script for parameter
sweep.

package limit;

use strict;
use NEXT;
use Coro::Semaphore;

my $smph;

sub initialize {
$smph = Coro::Semaphore->new($_);

}

sub new {
my $class = shift;
my $self = $class->NEXT::new(@_);
return bless $self, $class;

}

sub before {$smph->down;}
sub after {$smph->up;}

Figure 3: Definition of the limit module.

(xcrypt-init "limit" "core")
(xcrypt-call "limit::initialize" 10)

(setq jobs
(prepare
‘((:id . "psweep")

(:RANGE0 . ,(loop for x from 1 upto 5000
collect x))

(:exe0@ . ,#’(lambda (tmpl &rest vals)
(format nil
"./a.out input~A output~A"
(nth vals 0) (nth vals 0)))

(:after_in_job . (lambda (job &rest vals)
(format t
"~S is done."
(jobobj-get job "exe0"))))

(:after . ,#’(lambda (job &rest vals)
(format t
"Job ~A finished."
(jobobj-get job "id"))))

))))

(submit jobs)
(sync jobs)

Figure 4: Lisp-based Xcrypt script for parameter
sweep.

An array of job objects generated by the prepare function
is passed to submit function and it submits all the jobs cor-
responding to the job objects in the list. Each submitted
job is queued to a “job queue” (the batch scheduler has a
queue for each user or user group). When sufficient com-
puting resources to execute the queued job is available, the
scheduler assigns the resources to the job. During each job
execution, a.out is executed and then the Perl function set
to after_in_job is invoked in a computation node. The
message printed by after_in_job is stored in a “standard
output file” created for each job by a batch scheduler. When
each submitted job completed, the computing resources are
released and the procedure set as the value of the member
after is invoked. The message by after is printed to the
standard output of the Xcrypt (Perl) process.

This script limits simultaneously running (or queued) jobs
to 10 using the limit extension module. This module is
implemented as shown in Figure 3. When this module is
used, the semaphore is acquired before the submission of
each job, and it is released after the completion of each job.
The number of simultaneously running (or queued) jobs can-
not exceed the number set by limit::initialize since job
threads of excess jobs wait for acquiring a semaphore.

3. LISP FORNT-END FOR XCRYPT
3.1 Overview
In the Lisp-based Xcrypt, we can write a script equivalent
to Figure 2 as Figure 4. We can translate a Perl script to a
Lisp one straightforward. This script uses the Xcrypt built-
in feature of RANGE to create 5,000 job objects and submit
5,000 jobs. However, Lisp programmers would like to write
such an execution with a map function. Of course, we can
write a script as Figure 5 with mapcar and compose.

Furthermore, we can write a script as Figure 6. The jmapcar
function in this script submits a job for each element in the
list given as the second argument. During each job execu-
tion, a Lisp process is run (on a computation node) to call

(xcrypt-init "limit" "core")
(xcrypt-call "limit::initialize" 10)

(setq jobs
(mapcar (compose

#’prepare
#’(lambda (val0)

(let ((id (format nil "pwsweep~A" val0)))
‘((:id . ,id)
(:exe0 . ,(format nil

"./a.out input~A output~A"
val0 val0))

(:after_in_job
. (lambda (job)

(format t
"~S is done."
(jobobj-get job "exe0"))))

(:after . ,#’(lambda (job)
(format t
"Job ~A finished." id
)))))))

(loop for x from 1 upto 5000 collect x)))

(submit jobs)
(sync jobs)

Figure 5: Lisp-based Xcrypt script for parameter
sweep using a map function.

(xcrypt-init "limit" "core")
(xcrypt-call "limit::initialize" 10)

(jmapcar ’(lambda (val0)
(let ((exe0

(format nil
"./a.out input~A output~A"
val0 val0)))

(run-shell-comand exe0)
(format t "~S is done." exe0)))

(loop for x from 1 upto 5000 collect x)
:after #’(lambda (job val0)

(format t "Job ~A finished."
(jobobj-get job "id"))))

Figure 6: Lisp-based Xcrypt script for parameter
sweep using a job level parallel map function.

CL-USER(1): (xcrypt-init "limit" "core")
CL-USER(2): (xcrypt-call "limit::initialize" 10)
CL-USER(3): (setq jobs (mapcar #’prepare ...))
CL-USER(4): (submit jobs)
CL-USER(5): (mapcar #’get-job-status jobs)
("finished" "finished" "aborted" "running" "running" "queued" ...)
CL-USER(6):

Figure 7: Using Xcrypt in a Lisp Read-Print-Eval
Loop environment.

the function given as the first argument of jmapcar taking
the element as an argument.

The definition of the function to be called in the job execu-
tion, its arguments, and its return values are serialized and
sent to the computation node via generated lisp source files.
Therefore we cannot use objects that cannot be serialized,
such as function objects, streams, packages, and so on as
the arguments and the return values. In addition, the envi-
ronment (e.g., global variables) of the Lisp process invoking
jmapcar cannot be referred to from a Lisp process on a com-
putation node. Nevertheless this function is useful because
we can write a script more simply.

We can use Xcrypt features in a Read-Eval-Print Loop (REPL)
environment as Figure 7. We can submit jobs, check status
of the submitted jobs, and kill them interactively. Although
we also provide shell commands for these operations, we can
manage jobs and their results more directly and intuitively
in a REPL.

The lambda expressions in Figure 6 and in the values of
:after_in_job in Figure 4 and Figure 5, which are to be
serialized and evaluated in Lisp processes run during job
executions, are not prefixed by“#’”but“’”. This is because,
unlike Perl, it is difficult to serialize a once interpreted (or
compiled) function to a rereadable string.

3.2 Implementation
3.2.1 Overview
The näıve solution to achieve multilingualization is to re-
implement Xcrypt in the target language. But this solution
is non-productive and it is hard to maintain the Xcrypt pro-
grams for all languages. So we did not employ it.

Another possible solution is to just implement wrapper func-
tions for Xcrypt APIs such as prepare, submit, and sync that
just perform remote procedure call to a Perl-based Xcrypt
process. This is very easy, but in this solution we cannot
use extension modules implemented in Perl. We also have
to notice that Xcrypt APIs take various callback functions
such as the member value of after in Figure 2. In this wrap-
per solution, we cannot define such procedures in the target
language.

So we employed a third solution, to implement a general-
purpose RPC mechanism between Perl and the target lan-
guage that supports callbacks and remote object references.
It takes more implementation cost, but we expect that once
the design of the message protocol among Perl and other lan-
guages is fixed, we can easily implement supports for other
various languages.

We implemented the following functions to achieve the Lisp
version of Xcrypt.

• (xcrypt-init &rest modules): runs a Perl Xcrypt
process and make a TCP/IP connection to it. The
Perl process first load the specified extension modules
(defined in Perl) and listen a connection from the Lisp
process. After the connection established, the Perl pro-
cess executes a loop to handle messages from the Lisp

process, which include RPC requests and return values
of RPC from Perl to Lisp. The lisp process also creates
a thread to handle messages from the Perl process.

• (xcrypt-finish): finalizes the Perl process and close
the connection to it.

• (xcrypt-call fname &rest args): requests the Perl
process to call the function specified by fname with
the arguments args.

The arguments and return values from Lisp to Perl are se-
rialized (translated into the JSON [10] format), sent to the
message handler in the Perl process, and then deserialized.
Numbers, strings, and symbols in Lisp are converted to num-
bers and strings in Perl. Booleans are converted into num-
bers that represents the corresponding booleans. Both lists
and arrays are converted to arrays, except association lists
are converted to hash objects.

When sending a function object, the Lisp process adds a
pair of a generated function ID string and a reference to the
function to a global function table, and then sends only the
ID string. The message handler in the Perl process convert
the function ID to a Perl function that requests the Lisp
process to the call the function associated to the function
ID. Thus, a Perl function that receives a callback function
can call it without considering whether the function is a Lisp
function or a Perl function.

Objects of the other types, which cannot be translated into
the JSON format, such as streams, are converted into their
printed representations.

Almost the same mechanism is applied when sending object
from Perl to Lisp, except that, when a job object generated
in Perl Xcrypt is sent to Lisp, only its job ID string is sent.
The Lisp process converts the job ID into a proxy job object
and it can access members of the job object in the Perl
process via remote procedure calls such as jobobj-get in
Figure 4. We also provide jobobj-set to update member
values of job objects. We employed this implementation to
avoid the consistency problem.

3.2.2 Implementation of Xcrypt tools in Lisp
We can implement the functions prepare, submit, sync,
jobobj-get and jobobj-set easily only by calling the cor-
responding built-in functions in Perl using xcrypt-call. In
addition, we can implement jmapcar by using the prepare,
submit and sync functions and the :after_in_job mecha-
nism.

For example, the prepare, submit and jobobj-set functions
in Lisp can be implemented as follows:

(defun prepare (tmpl)

(xcrypt-call "builtin::prepare" tmpl))

(defun submit (jobs)

(xcrypt-call "builtin::submit" jobs))

(defun jobobj-set (jobj field newval)

(car (xcrypt-call "rpc::set" jobj field newval)))

where that the Perl function set is defined as follows:

package rpc;

sub set {

my ($jobj, $field, $newval) = @_;

return $jobj->{$field} = $newval;

}

When the prepare Lisp function is called, a job template
(an association list) is serialized into a JSON object (an un-
ordered collection of key-value pairs) and passed to a Perl
process, and then it is deserialized into a Perl hash object.
Then the Perl process calls the prepare Perl function with
the hash object as the argument. If the job template passed
to prepare in Lisp contains a function object, a pair of a
function ID and a reference to the function is added to a
global table. For example, when the argument value of the
prepare in Figure 4 is passed to a Perl process, pairs cor-
responding to the values of :exe0@ and :after are added
to a global table. In our current implementation, a pair of
fn and the return value of (write-to-string fn) is added
to the hash table named *function-table*, where fn is a
reference to a function object. Then a pair of the string and
a tag indicating that the object is a Lisp function is sent
to the Perl process, and it is translated to a Perl function
which performs a remote procedure call to the Lisp function
associated with the string, or fn.

In executing the prepare function in the Perl process, it
needs to call the :exe0@ function in the job template in order
to decide the :exe0 value of each job object being generated.
In this example, the function is defined in Lisp but Perl
can call it as if it is an ordinary Perl function because it is
already translated to a Perl function that performs a remote
procedure call.

When returning a list of job objects as the return value of
the prepare to the Lisp process, each job object is translated
to a pair of its ID string and a tag indicating that the object
is a job object. Then a list of the pairs are serialized to a
JSON array and deserialized to a list of proxy job objects
(instance objects of the structure defined by defstruct).

A Lisp user can refer to member values of a job object using
jobobj-get and jobobj-set. When a serialized proxy ob-
ject is passed to the Perl process, its message handler find
the job object corresponding to the ID and passes a reference
to the object to a Perl function such as set2.

When the Lisp process invoked submit with a list of proxy
objects as the argument, the Perl submit function is called
with a list of job objects and it generates 5,000 job threads
as explained in Section 2.2.2. Calling the :after function in
each thread works as well as calling the :exe0@ function from
prepare function. In order to invoke the :after_in_job

function in a Lisp process run during a job execution, a job
thread generates a job script that runs the following com-
mands:

2The original Xcrypt implementation has the mechanism to
find a job object from its ID employing a global job object
table. Therefore we did not have to newly implement a
mechanism such as a function table.

inventory_write psweepk running

./a.out inputk outputk
Execute Lisp to invoke after_in_job

alisp -qq -s psweepk_after_in_job.lisp
inventory_write psweepk done

and generates following Lisp script as
psweepk_after_in_job.lisp:

(defconstant +self+

’(("id" . "psweepk")
("RANGE0" . (1 2 3 . . . 5000))
("exe0" . "./a.out inputkoutputk")
. . .))

(defun jobobj-get (jobj memb)

(cdr (assoc memb jobj :test #’equal)))

Definitions of other utility functions.

(let ((retval

((lambda (job &rest vals)

(format t "~S is done."

(jobobj-get job "exe0")))

+self+ k)))
(with-open-file (o "psweepk_return"

:direction :output

:if-exists :append)

(print (cons :after_in_job retval) o)))

The lambda expression in the last form is the copy of the
value of :after_in_job in the job template in Figure 4. The
job object is also serialized and translated to an association
list in order to enable its member values to be referred to
in the :after_in_job function using the jobobj-get inter-
face. Note that the implementation of jobobj-get is differ-
ent from the one in the Xcrypt Lisp process.

The return value of :after_in_job function is written to a
text file so that a Lisp user can get it.

4. PRACTICAL EXAMPLE
Automatic performance tuning is one of the most signifi-
cant applications of Xcrypt. Actually, we performed perfor-
mance tuning for an electromagnetic field analysis program
using the Perl version of Xcrypt. The target analysis pro-
gram employs the well-known optimization technique called
tiling. The program using this technique takes four perfor-
mance parameters, the tile size (x, y, z) and the number of
tiling steps. The tuning space is too large to try all the
combination by parameter sweep. So we employed parame-
ter sweeps with limiting the search space step by step using
heuristics. As the result, we got 25% better performance
than hand-tuning [11].

We can write an Xcrypt script in Lisp for this automatic
performance tuning as Figure 83. In each parameter sweep
step, trials of performance evaluations are executed in paral-
lel and the best parameter set is selected from their results.
In the Lisp version of Xcrypt, we can treat parameter sets

3The tuning in [11] performed more tuning steps but they
are omitted because showing all the steps is not significant
here.

and results more easily as lists. In addition, we can follow
the progress of tuning by referring to *results* while the
script is running in an REPL.

5. CONCLUSION AND FUTURE WORK
We proposed an extension to Lisp which enables Lisp users
to write a wide variety of job level parallel processing em-
ploying computing resources of supercomputers. Using this
system, we can not only write a parallel script employing
execution files implemented in C or FORTRAN, but also
modify an existing Lisp program so that some parts of pro-
cedures in the program are executed in parallel as jobs.

We can realize basic features of a front-end for an additional
language only by implementing xcrypt-call, xcrypt-init
and xcrypt-finish in the target language based on the mes-
sage protocol explained in this paper; the implementation
cost is not very high. Actually, we are now developing front-
ends for other languages such as Ruby.

With the current implementation, we can write user script
in Lisp but extension modules such as the limit module
need to be implemented in Perl. We will extend the multi-
lingualization support to enables us to use modules written
in any language from a user Xcrypt script written in any
language.

Xcrypt is now available at http://super.para.media.kyoto-u.
ac.jp/xcrypt.

6. REFERENCES
[1] Seymour, K., You, H. and Dongarra, J.: A comparison

of search heuristics for empirical code optimization.,
CLUSTER, IEEE, pp. 421–429 (2008).

[2] Abe, T. and Sato, M.: Auto-Tuning of Numerical
Programs by Block Multi-Color Ordering Code
Generation and Job-level Parallel Execution, The
Seventh International Workshop on Automatic
Performance Tuning (IWAPT2012) (2012).

[3] Fujitsu, Inc.: HPC Middleware Parallelnavi.
http://jp.fujitsu.com/solutions/hpc/products/

parallelnavi.html (in Japanese), installed on the
supercomputer system of Kyoto University.

[4] Computing, P.: Platform LSF: The HPC Workload
Management Standard.
http://www.platform.com/workload-management/

high-performance-computing/lp.

[5] Sun Microsystems, Inc.: The Grid Engine project.
http://gridengine.sunsource.net/.

[6] Cluster Resources Inc.: TORQUE Resource Manager.
http://www.clusterresources.com/pages/

products/torque-resource-manager.php.

[7] Hiraishi, T., Abe, T., Iwashita, T. and Nakashima, H.:
Xcrypt: A Perl Extension for Job Level Parallel
Programming, Second International Workshop on
High-performance Infrastructure for Scalable Tools
WHIST 2012 (held as part of ICS’12), Venice, Italy
(2012).

[8] Sarathy, G.: Data::Dumper: stringified perl data
structures, suitable for both printing and eval. http:
//search.cpan.org/~smueller/Data-Dumper-2.128/.

[9] Lehmann, M.: Coro: the only real threads in perl.

http://search.cpan.org/~mlehmann/Coro-5.372/.

[10] Crockford, D.: RFC 4627: The application/json Media
Type for JavaScript Object Notation (JSON) (2006).
http://www.json.org/.

[11] Hibino, M., Minami, T., Hiraishi, T., Iwashita, T. and
Nakashima, H.: Automatic Performance Tuning of a
Program with the 3D FDTD Method Using Xcrypt,
Annual Meeting of The Japan Society for Industrial
and Applied Mathematics (JSIAM) (2012). (in
Japanese).

(xcrypt-init "limit" "core")
(xcrypt-call "limit::initialize" 16)

;; The list to store evaluation results
(defvar *results* (list))

;; Problem size
(defparameter *dom-x* 600) (defparameter *dom-y* 600) (defparameter *dom-z* 600)
(defparameter *nstep* 90)

;; Number of threads
(defparameter *nthread* 16)
;; Cache size per CPU socket [KB]
(defparameter *cache-size* 22784)
;; Cache size per node [KB]
(defparameter *cache-node* (* 2 *cache-size*))
;; Maximum number of grid points stored in cache
(defparameter *grid-max* (/ (* *cache-node* 1000) 52))

;; Submit a job to run evaluation program once and return the job object
(defun submit-fdtd (tile-x tile-y tile-z tile-step)
(let ((output-file

(format nil "result_~A_~A_~A_~A"
tile-x tile-y tile-z tile-step)))

(prepare-submit
‘((:id . "jobfdtd")
(:exe0 . ". /usr/Modules/3.2.9/init/bash")
(:exe1 . "module load intel/12.1")
(:exe2 . ,(format nil "export OMP_NUM_THREADS=~A" *nthread*))
(:exe3 . ,(format nil

"mpiexec.hydra ./myfdtd_tiling2_2011_03_01_sysB.out ~A ~A ~A ~A ~A ~A ~A ~A~ > ~A"
dom-x *dom-y* *dom-z* *nstep* tile-x tile-y tile-z tile-step output-file))

(:JS_cpu . ,*nthread*) (:JS_node . 1) (:JS_memory . "60G") (:JS_limit_time . "1:00")
(:after . ,#’(lambda (job)

(push (list (get-elapsed-time output-file)
tile-x tile-y tile-z tile-step)

results)))
))))

(defun product-if (test &rest sets)
;; Make a product set removing an element that does not satisfy test.
)

;; Step 1: find the optimal tile size assuming a tile is a cube
(sync (mapcan #’(lambda (tile-xyz)

(submit-fdtd tile-xyz tile-xyz tile-xyz 10))
(loop for x from *nthread* to *dom-x* collect x)))

(setq *results* (sort *results* #’< :key #’first))
(defparameter *optimal-cube-size* (second (car *results*)))

;; Step 2: find the optimal number of tiling steps for the optimal cube size.
(setq *results* nil)
(sync (mapcan #’(lambda (tile-step)

(submit-fdtd *optimal-cube-size* *optimal-cube-size* *optimal-cube-size* tile-step))
(loop for s from 1 to 30 collect s)))

(setq *results* (sort *results* #’< :key #’first))
(defparameter *optimal-tile-step* (second (car *results*)))

;; Step 3: find the optimal tile size (not assuming a tile is a cube)
(setq *results* nil)
(sync (mapcan #’(lambda (tile-size)

(submit-fdtd (first tile-size) (second tile-size) (third tile-size) *optimal-time-step*))
(product-if #’(lambda (tx ty tz)

(<= (- (expt *optimal-cube-size* 3) (* *grid-max* 0.05))
(* tx ty tz)
(+ (expt *optimal-cube-size* 3) (* *grid-max* 0.35))))

(loop for x from *nthread* to *dom-x* by 16 collect x)
(loop for y from *nthread* to *optimal-cube-size*

by (floor (+ (/ *optimal-cube-size* 20) 0.5)) collect y)
(loop for z from *nthread* to 350 by 9 collect z))))

(setq *results* (sort *results* #’< :key #’first))

;; Print the optimal parameter set and the elapsed time with it
(print (car *results*))

Figure 8: Lisp script for performance tuning of a FDTD program.

