
Experience with SC: Transformation-based Implementation
of Various Extensions to C

Tasuku Hiraishi Masahiro Yasugi Taiichi Yuasa

{hiraisi, yasugi, yuasa}@kuis.kyoto-u.ac.jp
Graduate School of Informatics, Kyoto University

Sakyo Kyoto, JAPAN 606-8501

ABSTRACT
We have proposed the SC language system which facilitates
language extensions by translation into C. In this paper, we
present our experience with the SC language system and dis-
cuss its design, implementation, applications and improve-
ments. In particular, we present the improvement to the de-
sign of transformation rules for implementing translations,
which includes the feature to extend an existing transforma-
tion phase (rule-set). This enables us to implement many
transformation rule-sets only by describing the difference,
and helps us to use commonly-used rule-sets as part of the
entire transformation. We also show several actual examples
of extensions to C: garbage collection, multithreading and
load balancing.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks; D.3.4 [Programming Lan-
guages]: Software—Translator writing systems and com-
piler generators

General Terms
Languages, Design

1. INTRODUCTION
The C language is often indispensable for developing practi-
cal software systems. Sometimes extended C languages are
suitable for elegant and efficient development. A language
extension can be implemented by modifying a C compiler,
but in many cases it can also be done by translating ex-
tended C programs into C.

We have proposed the SC language system which facilitates
transformation-based language extensions[9]. SC languages
are extended C languages with an S-expression-based syn-
tax. A distinguished SC language, called SC-0, is the plain
C language with a Lisp-like syntax. SC-0 is implemented
by a translator to the C language. With the SC language

system, a language extension is implemented as a translator
to SC-0 (and then to C) (See Figure 1). Such a translator
can be easily implemented for the following reasons:

• a program represented by S-expressions can be used
as an AST (abstract syntax tree) without any prepro-
cessing,

• we can use Lisp facilities for manipulating
S-expressions, and

• we can handle environments (translation contexts) eas-
ily by using dynamic variables in Common Lisp.

So far, we have developed various language extensions using
this system. In this process, we have also improved the sys-
tem itself to solve several problems that we encountered. For
example, we introduced a pattern matching facility over S-
expressions for simplifying the notation of translating func-
tion definitions[9]. In addition, we implemented a translator
from C to SC-0, which enables SC programs to use function
declarations and macros in C header files[10].

We also encountered a significant problem that we had to
modify the existing implementations when we used multi-
ple transformation phases at the same time, resulting poor
maintainability and reusability. To solve this problem, we
devised a facility for extending code translators. This facility
reduces duplicated description, enables differential program-
ming, and manages existing implementations efficiently.

This paper also presents some high-level languages devel-
oped by using the SC language system. They are realized
by using LW-SC as an intermediate language, which is an ex-
tended SC language with nested functions and we presented
before[9, 11].

2. SC LANGUAGE SYSTEM
2.1 Overview
The SC language system is implemented in Common Lisp
and consists of the following modules:

• the SC preprocessor, which includes specified SC files
and handles macro definitions and expansions,

• the SC translator, which applies transformation rules
and generates code into another SC language, and

executable file

SC compiler C compiler

transformation rule-set B

extended SC-A code C code

SC translator

SC translator SC translator

extended SC-B code

extended SC-C code

transformation rule-set A

transformation rule-set C SC-0 code

libraries

SC preprocessorSC preprocessor

SC preprocessor SC preprocessor

Figure 1: Code translation phases in the SC language system.

(def (sum a n) (fn int (ptr int) int)
(def s int 0)
(def i int 0)
(do-while 1

(if (>= i n) (break))
(+= s (aref a (inc i))))

(return s))

Figure 2: An SC-0 program.

int sum (int* a, int n) {
int s=0;
int i=0;
do{
if (i >= n) break;
s += a[i++];
} while(1);
return s;

}

Figure 3: A C program equivalent to Figure 2.

• the SC compiler, which compiles SC-0 into C.

Figure 1 shows code translation phases in the SC language
system. Extended SC code is translated into SC-0 by the SC
translators, and then translated into C by the SC compiler.
At each translation phase, the SC preprocessor and then a
transformation rule-set is applied. Extension implementers
can develop a new translation phase simply by writing a new
transformation rule-set.

Figure 2 shows an example program in SC-0, the final tar-
get of the translators. This program is equivalent to the C
program in Figure 3. See [8] for the full syntax of SC-0.

2.2 SC Preprocessor
The SC preprocessor handles the following SC preprocessing
directives to transform SC programs:

• (%include file-name)
corresponds to an #include directive in C. The file
file-name is included.

• (%defmacro macro-name lambda-list
S-expression1· · · S-expressionn)

is evaluated as a defmacro form of Common Lisp to de-
fine an SC macro. After the definition, every list in the
form of (macro-name · · ·) is replaced with the result
of the application of Common Lisp’s macroexpand-1

function to the list. The algorithm to expand nested
macro applications complies with the standard C spec-
ification.

• (%defconstant macro-name S-expression)
defines an SC macro in the same way as a %defmacro

directive, except that every symbol which eqs macro-
name is replaced with S-expression after the definition.

• (%undef macro-name)
undefines the specified macro defined by %defmacros
or %defconstants.

• (%ifdef symbol list1 list2)
(%ifndef symbol list1 list2)
If the macro specified by symbol is defined, list1 is
spliced there. Otherwise list2 is spliced.

• (%if S-expression list1 list2)
S-expression is macro-expanded, and then the result
is evaluated by Common Lisp. If the return value
eqls nil or 0, list2 is spliced there. Otherwise list1
is spliced.

• (%error string)
interrupts the compilation with an error message string .

• (%cinclude file-name)
specifies a C header file file-name. The C code is com-
piled into SC-0 and the result is spliced there. The
SC programmers can use library functions and most
of macros such as printf, NULL declared/#defined in
C header files1.

2.3 Transformation rules
From the earlier version[9], we made some changes in the
design of transformation rules. Now we define a translation
phase as a rule-set, and introduced the concept of rule-set
extension explicitly. In addition, we introduced more Lisp-
like and less declarative notations.

1In some cases such a translation is not obvious. In partic-
ular, it is sometimes impossible to translate #define macro
definitions into %defmacro or %defconstant. We discussed
this problem before[10].

2.3.1 Specification

Defining rule-sets. Each translation phase in Figure 1 is
governed by a transformation rule-set.

A code transformation phase in Figure 1 is defined as a rule-
set. The syntax for defining a rule-set is as follows:

(define-ruleset rule-set-name (parent-rule-set-name . . .)
(parameter-name default-value)
. . .
).

The rule-set-name specifies a name of the being defined rule-
set. The rule-set extends zero or more rule-sets specified by
parent-rule-set-name. The extended rule-set inherits the all
rules and the all parameters from the parent rule-sets. Pa-
rameters, specified with parameter-name and default-value,
can be referred to by rules which belong to the rule-set with
the ruleset-param function.

In particular, parameters with the following names have spe-
cial meanings.

• entry: The value must be a symbol and it specifies a
rule which is called at the beginning when the rule-set
is applied.

• default-input-handler: The value must be a func-
tion with one argument. This function is called if no
pattern matches when a rule is applied.

Defining rules. Then we need to define rules which belong
to the rule-set. 2

(defrule rule-name rule-set-name
((#?pattern11 . . . #?pattern1m1)

form-list1)
. . .
((#?patternn1 . . . #?patternnmn)

form-listn)
[(otherwise form-listotherwise)]
)

When a rule is applied, the parameter is tested whether it is
matched by any of pattern in the following order: pattern11,
. . . pattern1m1 , . . . patternn1, . . . patternnmn . The form list
form-listi is evaluated (by a Lisp evaluator) when the argu-
ment is matched by patternik. If no pattern matches the
parameter, form-listotherwise is evaluated if exists, otherwise
the function default-input-handler of the rule-set rule-
set-name is called (the parameter is passed to the function).

We can define a rule using keyword extendrule instead of
defrule. Extendrule has the same syntax and semantics
as defrule except that the rule rule-name of a parent rule-
set is applied when no pattern matches and no otherwise

clause is given. In the case where a rule-set has multiple

2Parentheses enclosing (a) pattern(s) can be omitted where
mi = 1.

parent rule-sets, the applying order is determined by the
“class precedence list” of CLOS.

Patterns. We specify patterns using notations similar to
backquote macros. More precisely, pattern is an S-expression
consisted of one of the following elements:

(1) symbol
matches a symbol that is eq to symbol.

(2) ,symbol
matches any element.

(3) ,@symbol
matches zero or more any elements.

(4) ,symbol[function]
matches an element if the evaluation result of
(funcall #’function element) is non-nil.

(5) ,@symbol[function]
matches zero or more elements if the evaluation result of
(every #’function list) is non-nil, where list is a list
of the elements.

The function function can be what is defined as a transfor-
mation rule or an ordinary Common Lisp function (a built-in
function or what is defined separately from transformation
rules). A lambda special form can be written directly as a
function.

In evaluating a form list in a defrule (extendrule) body,
variable x is bound to the whole S-expression of the pa-
rameter and, in all the cases except (1), symbol is bound
to the matched part of the S-expression. In addition, the
get-retval function can be used to get an actual return
value of function in (4) and (5) by passing the correspond-
ing symbol.

Applying rule-sets. A defined rule-set (transformation phase)
can be applied using the function apply-ruleset:

(apply-ruleset input :rule-set-name).

The apply-ruleset receives additional keyword parameters
corresponding to parameter-names, which change values of
rule-set parameters. Here shows an example:

(apply-ruleset ~(* a b) :sc0-to-sc0

:entry ’expression).

This function applies the expression rule of the specified
rule-set sc0-to-sc0 to input.3 In processing apply-ruleset,
dynamic variable *current-ruleset* which stands for the
current rule-set is dynamically bound to the specified rule-
set.

3The input can be a string or a pathname which specifies a
SC source file.

(define-ruleset sc0-to-sc0 ()
(entry ’sc-program)
(default-input-handler #’no-match-error))

(defrule sc-program sc0-to-sc0
(#?(,@decl-list)
(mapcar #’declaration decl-list)))

(defrule declaration sc0-to-sc0
(#?(,scs[storage-class-specifier] ;function definitions

(,@id-list[identifier]) (fn ,@tlist) ,@body)
~(,scs (,@id-list) ,(third x)

,@(mapcar #’block-item body)))
...)

(defrule block-item sc0-to-sc0
((#?,bi[declaration]

#?,bi[statement])
(get-retval ’bi))
)

(defrule statement sc0-to-sc0
(#?(do-while ,exp ,@body)
~(do-while ,(expression exp)

,@(mapcar #’block-item body)))
...
(otherwise (expression x)) ;expression-statements
)

...

(define-ruleset sc1-to-sc0 (sc0-to-sc0))
(extendrule statement sc1-to-sc0

((#?(let (,@decl-list) ,@body))
~(begin ,@(mapcar #’declaration decl-list)

,@(mapcar #’block-item body)))
((#?(while ,exp ,@body))
(let ((cdt (expression exp)))

~(if ,cdt
(do-while ,cdt ,@(mapcar #’block-item body)))))

((#?(for (,@list ,exp2 ,exp3) ,@body))
(let ((e1-list (mapcar #’block-item list))

(e2 (expression exp2))
(e3 (expression exp3))
(new-body (mapcar #’block-item body)))

(list ~(begin
,@e1-list
(if ,e2

(do-while (exps ,e3 ,e2)
,@new-body))))

))
((#?(loop ,@body))
~(do-while 1 ,@(mapcar #’block-item body)))
)

Figure 4: Transformation rule-sets.

Applying rules. A rule defined with defrule or extendrule
can be called as a function which takes one required argu-
ment and optional ones: the required one is an input for the
rule, and the optional ones can specify a rule-set name and
values of its parameters to supersede defaults. If a rule-set
name is given explicitly, the rule of the specified rule-set is
applied to the input and the current rule-set is bound to the
specified rule-set. Otherwise, the rule of the current rule-set
is applied.

As described above, we can refer to parameters of a rule-set
with the ruleset-param function. This function takes the
symbol of a parameter name and returns the value of the
parameter of the current rule-set.

2.3.2 Example
Figure 4 shows an example of definitions of transformation
rule-sets. A character ‘~’ in this figure is a macro char-
acter which works as if it were a backquote, except that
symbols in the following expression are interned to a distin-
guished package for SC code instead of the current package

(*package*) 4. Two rule-sets are defined in this figure. The
sc0-to-sc0 rule-set defines a identical transformer from SC-
0 to SC-0. The sc1-to-sc0 rule-set defines a transformation
from the SC-1 language to SC-0. SC-1 features several con-
structs for iteration and bindings added to SC-0.

Suppose that the form

(statement ~(do-while x (while y (++ z)))

:sc1-to-sc0)

is evaluated. This evaluation is progressed as follows:

1. The statement rule of sc1-to-sc0 is applied to the
given input; no pattern matches.

2. The statement rule of sc0-to-sc0 is applied; the pat-
tern #?(do-while . . .) matches.

3. Because the expression rule of sc1-to-sc0 is not de-
fined, the expression rule of sc0-to-sc0 is applied to
x; x is returned. (the expression rule is snipped in
the figure.)

4. Because the block-item rule of sc1-to-sc0 is not de-
fined, the block-item rule of sc0-to-sc0 is applied
to (while y (++ z)), and then the statement rule of
sc1-to-sc0 is applied; (if y (do-while y (++ z)))

is returned.

5. (do-while x (if y (do-while y (++ z))))

is returned.

Since the current rule-set varies according to context, the
rule of the current rule-set also varies. For example, when
(statement . . . :sc0-to-sc0) is evaluated, the statement

rule of sc0-to-sc0 is applied to (while . . .) and
no-match-error occurs.

2.3.3 Implementation
This rule-set extension facility is implemented using CLOS.
Figure 5 shows (simplified) implementation code for
define-ruleset, defrule, extendrule and apply-ruleset.
Roughly speaking, define-ruleset and defrule

(or extendrule) correspond to defclass and defmethod re-
spectively so that we can dispatch an appropriate rule for
the being applied rule-set.

In addition, the dynamic variable *current-ruleset* is
used to remember the being applied rule-set and each func-
tion to which a rule name is bound wraps the actual method
call with the value of this dynamic variable. As a result, we
need not to write the trivial rule-set argument in the defini-
tions.

3. DISCUSSION
In the earlier version of the SC system, the definition of
transformation rules which correspond to Figure 4 can be
written as in Figure 6. All the rules were at the same

4Though the keyword package is generally used for treating
shared symbols across multiple packages, we employed this
notation to avoid writing a preamble ‘:’ for every symbol.

(defmacro define-ruleset (name parents &body parameters)
‘(defclass ,(ruleset-class-symbol name)

,(or (mapcar #’ruleset-class-symbol parents)
(list *base-ruleset-class-name*))

,(loop for (p v) in parameters
collect ‘(,p :initform ,v

:initarg ,p))))

(defun apply-rule (input ruleset &rest initargs)
(let ((*current-ruleset*

(apply #’make-instance ruleset initargs)))
(funcall (rule-function

(slot-value *current-ruleset* ’entry))
(if (or (stringp input)

(pathnamep input))
(sc-file:read-sc-file input)
input))))

(defun rulemethod-args (ruleset)
‘(x (,*ruleset-arg* ,(ruleset-class-symbol ruleset))))

(defmacro defrule (name ruleset &body pats-act-list)
‘(progn

(defmethod ,(rule-method-symbol name)
,(rulemethod-args ruleset)

(block ,name
(case-match x
,@pats-act-list
(otherwise ;(call-next-method) in extendrule.
(call-otherwise-default x ’,ruleset)))))

(defun ,(rule-function-symbol name)
(x &optional (ruleset *current-ruleset* r)

&rest initargs)
(if r

(let ((*current-ruleset*
(apply #’make-instance ruleset initargs)

(,(rule-method-symbol name) x *current-ruleset*))
(,(rule-method-symbol name) x *current-ruleset*)))))

Figure 5: Implementation code for defining rule-
sets.

level and the concept of “rule-set” did not exist explicitly.
(Though we used this term, which simply indicated a group
of rules which was related to one transformation phase.)
Therefore we had to write rules for the whole syntax, even
if an extended language has only several new constructs.

3.1 Extensibility of rule-sets
In the current version, existing rule-sets can be extended to
define a new rule-set. In Figure 4, the sc1-to-sc0 rule-set
is defined by extending sc0-to-sc0, which is a rule-set for
identical transformation. By using sc0-to-sc0 as a common
template, many transformation rule-sets can be defined only
by describing the difference.

Extending rule-sets is also helpful when we use a commonly-
used rule-set as part of the entire transformation. For in-
stance, when we implement high-level services, we divide the
entire transformation into several phases. Indeed, when we
implemented MT-SC (SC-0 with multithreading), we used
the type-info rule-set to add type information to all ex-
pressions. In this case we cannot use the original type-info
rule-set as it is, but we can easily extend it for MT-SC
(See Figure 7). In a similar manner, we can easily reuse
the type-info rule-set for implementing other extended lan-
guages by writing a small amount of additional code.

In addition, extending rule-sets is also helpful when we want
to use multiple extensions at the same time. Suppose we
have already implemented extensions A and B, and we want

(sc0-program (,@decl-list))
-> (mapcar #’declaration decl-list)))
(sc0-declaration (,scs[storage-class-specifier]

(,@id-list[identifier]) (fn ,@tlist) ,@body))
-> ~(,scs (,@id-list) ,(third x)

,@(mapcar #’block-item body)))
...
(sc0-block-item ,bi[declaration])
(sc0-block-item ,bi[statement])
-> (get-retval ’bi)

(sc0-statement (do-while ,exp ,@body))
-> ~(do-while ,(expression exp)

,@(mapcar #’block-item body)))
...
(sc0-statement ,otherwise)
-> (expression x)
...

(sc1-program (,@decl-list)) -> ...
(sc1-declaration (,scs[storage-class-specifier] ...)) -> ...
(sc1-block-item ,bi[declaration])
(sc1-block-item ,bi[statement]) -> ...

(sc1-statement (do-while ,exp ,@body)) -> ...
...
(sc1-statement (let (,@decl-list) ,@body))
-> ~(begin ,@(mapcar #’declaration decl-list)

,@(mapcar #’block-item body))
(sc1-statement (while ,exp ,@body))
-> (let ((cdt (expression exp)))

~(if ,cdt
(do-while ,cdt ,@(mapcar #’block-item body))))

(sc1-statement (for (,@list ,exp2 ,exp3) ,@body))
-> (let ((e1-list (mapcar #’block-item list))

(e2 (expression exp2))
(e3 (expression exp3))
(new-body (mapcar #’block-item body)))

(list ~(begin
,@e1-list
(if ,e2

(do-while (exps ,e3 ,e2)
,@new-body)))))

(sc1-statement (loop ,@body))
-> ~(do-while 1 ,@(function-body body))

Figure 6: The earlier version of transformation
rules.

an extended language which features both of them. As
Figure 8 shows, such an implementation could be done by
connecting two rule-sets serially one after another. If we
choose the left path, we must modify the rule-set for B to
support new features added in A. This modification can be
done by the rule-set extension facility described above. We
can write the difference separately instead of rewriting the
rule-set B. This scheme works well if A is a relatively sim-
ple extension (e.g. new constructs for iteration). However if
both A and B are non-trivial extensions, extending a rule-set
is not easy because the semantics for A+B is not straight-
forward.

Figure 9 shows code for extending the sc1-to-sc0 rule-set
to fit MT-SC. Because such differential code can be man-
aged independently of base rule-sets, we can manage rule-
sets more clearly.

3.2 Ease of use
In the old version, we used to introduce more declarative no-
tation for transformation rules in consideration of other rule-
based languages such as Prolog. Now transformation rules
are described with ML-like notations for pattern matching,

type-info
(for MT-SC)

multithread · · ·

MT-SC code

extend

type-info
(for SC-0)

MT-SC code (with type information)

Figure 7: A rule-set as part of the entire transfor-
mation.

SC-0 +A+B code

SC-0+B codeSC-0+A code

SC-0

extend

A+B → A A+B → B

A → SC-0 B → SC-0

Figure 8: Applying multiple rule-sets.

mainly because of implementation convenience. Some peo-
ple may prefer the old syntax, but we think the new one is
more intuitive because rules look like BNF notations.

4. IMPLEMENTING EXTENDED
LANGUAGES

The SC language system allows language extensions from
simple ones to non-trivial ones. Examples of relatively sim-
ple extensions include some new constructs for iterations and
Java-like labeled-breaks/continues[8]. On the other hand,
non-trivial extensions include exception handlers[16] and
nested functions, and their implementations typically need
additional declarations of temporary variables; thus type in-
formation is also required.

In earlier work, we implemented LW-SC, an extended SC
language with nested functions[9, 11]. Without returning
from a function, a nested function can manipulate its caller’s
local variables (or local variables of its indirect callers) by
indirectly calling a nested function of its (indirect) caller.
Thus, many high-level services with “stack walk” (such as
check-pointing and copying GC) can be easily and elegantly
implemented by using LW-SC as an intermediate language.

Moreover, such services can be implemented efficiently be-
cause we designed and implemented LW-SC to provide
“lightweight” nested functions by aggressively reducing the
cost of creating and maintaining nested functions.

We have also implemented nested functions with lightweight
closures by modifying the GCC compiler[19], with which we
can get better performance.

4.1 HSC — Copying GC
To implement garbage collection, the collector needs to be
able to find all roots, each of which holds a reference to an
object in the garbage-collected heap. In C, a caller’s pointer

(define-ruleset multithread-sc1 (sc1-to-sc0))

(extendrule statement multithread-sc1
(#?(thread-create ,dec-list ,@body)
~(thread-create

,(mapcar #’declaration dec-list)
,@(mapcar #’block-item body)))

(#?(thread-suspend ,id[identifier] ,@body)
~(thread-suspend ,id ,@(mapcar #’block-item body)))

(#?(thread-resume ,exp)
~(thread-resume ,(expression exp)))

)

Figure 9: Extending the sc1-to-sc0 rule-set for MT-
SC.

variable may hold an object reference, but it may be sleep-
ing in the execution stack until the return to the caller.
Even when using direct stack manipulation, it is difficult for
the collector to distinguish roots from other elements in the
stack. For this reason, conservative collectors [2] are often
used. Conservative copying collectors can inspect the exe-
cution stack but cannot modify it. Accurate copying of GC
can be performed by using translation techniques based on
“structure and pointer” [6, 7] with higher maintenance costs.
But as described above, we can implement a garbage col-
lector with low maintenance costs using lightweight nested
functions.

By embedding garbage collection, we actually implemented
HSC (High-level SC), which is a memory safe SC-0 language
with objects allocated in a garbage collected heap.

4.1.1 Specification
To guarantee memory safety, we modified the specification
of SC-0. In particular, HSC uses “references” instead of
pointers. Therefore,

• getting addresses of variables by ptr (& in C),

• arithmetic operations for references, and

• pointer casts

are not permitted in HSC. The other modifications are as
follows:

• The syntax (new expression) is added to expression,
which evaluates a given expression, allocate an object
initialized to the result, and then returns a reference
to the object.

• An array type is not equivalent to any pointer types
even if it appears as an argument type.

• An array reference
(aref expression1 expression2)

is permitted only if the value of expression1 has an
array type. It is no longer equivalent to
(mref (+ expression1 expression2)).

• No union types exist. (From a practical viewpoint,
disjoint unions should be implemented instead.)

(def (struct sPair)
(def car (ptr Object))
(def cdr (ptr Object)))

(deftype Pair (struct sPair))

(def (make-pair e1 e2)
(fn (ptr Pair) (ptr Object) (ptr Object))

(def pair (ptr Pair) NULL)
(counter-on)
(= pair (new (init Pair (struct e1 e2))))
(counter-off)
(return pair))

Figure 10: An HSC program.

(deftype sht (ptr (lightweight void void)))

(def Pair-desc (struct descriptor)
(struct size map-array ...))

(def (make-pair scan0 e1 e2)
(fn (ptr Pair) sht (ptr Object) (ptr Object))

(def pair (ptr Pair) NULL)
(def (scan1) (lightweight void void)

(= e1 (evacuate e1)) (= e2 (evacuate e2))
(= pair (evacuate pair))
(scan0))

(counter-on scan1)
(= pair (getmem scan1 (ptr Pair-desc)))
(= (mref pair) (init Pair (struct e1 e2)))
(counter-off scan1)
(return pair))

Figure 11: Scanning stack implemented by nested
functions in LW-SC.

Figure 10 shows an example of an HSC program. In this
figure, (init Pair (struct e1 e2)) is an SC-0 expression
which is equivalent to (Pair){e1,e2} in C99[12].

4.1.2 Implementation
Figure 11 partially shows how scanning of roots can be im-
plemented by using nested functions. Getmem allocates a new
object in the heap and may invoke the copying collector with
the nested function scan1. The copying collector can indi-
rectly call scan1, which effects the evacuation (copying) of
objects by using roots (e1, e2 and pair) and indirectly calls
scan0 in a nested manner. The actual entity of scan0 may
be another instance of scan1 in the caller. The nested calls
are performed until the bottom of the stack is reached.

4.2 MT-SC — Multithreading
We implemented an extended SC-0 language MT-SC involv-
ing features for multithreading.

We used the implementation techniques which we proposed
before in [15].

4.2.1 Specification
By “threads”, we do not mean OS threads; we mean language-
level threads. Each thread of MT-SC is “active” or “sus-
pended”. A thread is created by thread-create statement
in “active” state. The thread can suspend itself to become
“suspended”, and at the same time a continuation of the
thread can be saved. Another thread can resume the sus-
pended thread by specifying the continuation. A thread is
eliminated when it finishes the given computation.

(def (pfib n) (fn int int)
(def x int) (def y int)
(def nn int 0) (def c cont 0)
(if (<= n 1)

(return 1)
(begin
(thread-create

(= x (pfib (- n 1)))
(if (== (++ nn) 0)

(thread-resume c))) ; Resume the waiting thread.
(= y (pfib (- n 2)))
(if (< (-- nn) 0) ; Wait for synchronization.

(thread-suspend c0 (= c c0)))
(return (+ x y)))))

Figure 12: An MT-SC program.

MT-SC has following primitives:

• (thread-create body) creates a new thread which ex-
ecutes body,

• (thread-suspend identifier body) binds the variable
identifier to the current continuation, executes body
to save the continuation, and then makes the current
thread suspended, and

• (thread-resume expression) resumes the suspended
thread. The value of expression should be a continua-
tion saved by thread-suspend.

Figure 12 shows an example of an MT-SC program.

4.2.2 Implementation
These features can be implemented using nested functions
in LW-SC as shown in Figure 13. Every function has its
own nested function to continue its equivalent computation
and saves the pointer of the nested function to be called
later to early execute the thread’s unprocessed computation
(continuation). Such a nested function is also generated for
each thread-create.

A translated program also includes a scheduler function
scheduling and a thread stack. The thread stack holds
a state and a continuation (a pointer of nested function)
corresponding to each thread. When the scheduler is called,
it takes one of active threads and resumes it by calling its
nested function.

Our implementation does not need per-thread execution stacks,
and nor heap memory for storing thread frames.

4.3 T-Cell — Automatic loads balancing
Today parallel computing becomes popular. However, vari-
ous programming models for shared memory environments
(e.g., multi-core processors, multi-processors) or distributed
memory environments (e.g., clusters, grid computing sys-
tems) confuse many programmers.

To address this problem, we are developing a load-balancing
framework based on lazy partitioning where workers auto-
matically exchange tasks with each other via base servers,
and the T-Cell language for the framework. Lazy partition-
ing means that tasks are partitioned only when a request has
arisen.

(decl (struct _thstelm))
(deftype cont (ptr (lightweight (ptr void)

(ptr (struct _thstelm)) reason)))
(def (struct _thstelm)

(def c cont)
(def stat (enum t-stat)))

(deftype thst_ptr (ptr (struct _thstelm)))
(def thst (array (struct _thstelm) 4192)) ; a thread stack
(def thst_top thst_ptr thst) ; top of the thread stack

(def (pfib c_p n) (fn int cont int)
(def ln int 0)
(def x int) (def y int)
(def nn int 0) (def c thst_ptr 0) (def c0 thst_ptr)
(def tmp2 int) (def tmp1 int)

(def (pfib_c cp rsn)
(lightweight (ptr void) thst_ptr reason)

(switch rsn
(case rsn_cont)

(switch ln
(case 1) (goto L1)
(case 2) (goto L2)
(case 3) (goto L3))

(return)
(case rsn_retval)

(switch ln
(case 2)

(return (cast (ptr void) (ptr tmp2))))
(return))

(return)
... Almost the same contents as the owner function ...
)

(if (<= n 2)
(return 1)
(begin

;; push a current continuation to the thread stack
(begin

(= ln 1)
(= (fref thst_top -> c) pfib_c)
(= (fref thst_top -> stat) thr_new_runnable)
(inc thst_top))

;; the body of thread-create
(begin

(def ln int 0)
(def (nthr_c cp rsn)

(lightweight (ptr void) thst_ptr reason)
...)

(= ln 1)
(= x (pfib nthr_c (- n 1)))
(inc nn)
(if (== nn 0) (thr_resume c)))

;; pop the thread stack
(if (!= (fref (- thst_top 1) -> stat)

thr_new_runnable)
(scheduling) ; call a scheduler
(dec thst_top))

;; (label L1) (in the nested function)
(= ln 2)
(= y (pfib pfib_c (- n 2)))
;; (label L2) (in the nested function)
(= nn (- nn 1))
(if (< nn 0)

(begin
;; suspend a current thread
(= c0 (inc thst_top))
(= (fref c0 -> c) pfib_c)
(= (fref c0 -> stat) thr_new_suspended)
(= c c0)
(= ln 3)
(scheduling))) ; call a scheduler

;; (label L3) (in the nested function)
(return (+ x y)))))

Figure 13: Multithreading implemented by LW-SC.

Figure 14 shows a multi-stage overview of the load-balancing
framework. Compiled T-Cell programs are executed on one
or more computation nodes. Each computation node has
one or more workers in the shared memory environment.

Workers can communicate with each other by message pass-
ing. For automatic loads balancing, idle workers request
tasks of busy workers. To relay a task request message, the
base server which received the task request guesses a busy
node and passes the request to it, maybe via another base
server.

To spawn a larger task, the busy worker which received a
task request temporarily backtracks its computation as far
as possible before spawning a new task. For example, sup-
pose that a worker computes fib(n), the n-th Fibonacci num-
ber, with the program in Figure 15. The worker begins with
computing fib(n − 1). If the worker receives a task request
in computing fib(n − 1), it spawns a task for computing
fib(n − 2). Such mechanism can be implemented by using
nested functions[20, 21].

Unlike LTC[13] and Cilk[5], our approach does not create
multiple logical threads as potential tasks nor manage any
queue of them. We employ a sequential program with task
spawn handlers, which can be regarded as restartable excep-
tion handlers.

4.3.1 Specification
Figure 15 shows an example of a T-Cell program. Program-
mers can write a worker program with new constructs in
T-Cell based on an existing sequential program. T-Cell has
constructs for defining a task and for specifying potential
task creation and result use.

The structure of a task object can be defined in the same
way as struct, except that we may specify an :in or :out

attribute for each field.

The computation of a task is defined by
(def (task-body task-name) body).
A worker executes body when it receives the task task-name.
In a task-body body, we can refer to a task object by the
keyword this, which includes an input of the task in :in

fields, and we should set the result of the computation into
:out fields.

A statement
(do-two statement1 statement2

(task-name (:put bodyput) (:get bodyget)))

indicates that the computation of statement1 and statement2
is divisible. This execution progresses as follows:

1. The statement statement1 is executed. If the task re-
quest handler for this do-two statement is invoked, the
current task is divided by spawning a new task, setting
the fields of the task object by bodyput, and then send-
ing it to the task requester. Here, the computation to
be done by statement2 is packed as the task object.

2. If the task request handler for this do-two statement
is not invoked until the execution of statement1 is fin-
ished, the statement statement2 is then executed. Oth-

programmers

base server

node

libraries

· · ·

· · ·

task

SC translators

base server

worker

worker node
worker

node
worker

worker
task-request

SC translator

T-Cell

C compiler

CLW-SC

user

result ACK

executasble file

deploy

Figure 14: A load-balancing framework based on lazy partitioning.

erwise, the execution of statement2 is skipped and the
worker waits for the result of the spawned task and
then merges the result by executing bodyget. In wait-
ing for the result of the spawned task, the worker may
execute another task.

The identifier task-name specifies the type of task to be cre-
ated. As in a task-body body, the keyword this can be
used to refer to the task object in bodyput and bodyget. We
should set an input for a task in bodyput by assigning the
value to :in fields, and can get a result in bodyget by re-
ferring to :out fields. This series of operations should be
equivalent to the execution of statement2.

The availability of the task request handler for a do-two

statement has a dynamic extent and multiple handlers for
do-two statements can be nested. The oldest handler should
be invoked when a worker received a task request in order
to make spawned tasks as large as possible.

For dividing iterative computation, T-Cell has the do-many

construct. The syntax is as follows:
(do-many for identifier

from expression from to expressionto

body
(task-name

(:put from identifier from to identifier to bodyput)

(:get bodyget)))

This iterates body over integers from expression from to ex-
pressionto. When the task request handler is invoked, a
part of iterations is spawned as a new task. The actual as-
signed range can be referred to in bodyput via identifier from

and identifier to.

In addition, T-Cell has “undo-redo clauses”, syntactically
denoted by
(dynamic-wind (:before bodybefore)

(:body body)
(:after bodyafter)).

This executes bodybefore, body and bodyafter in this order. The
bodyafter is also executed before an attempt to divide older
do-two/do-many computation, bodybefore is also executed af-
ter the attempt5. By using this construct, we can avoid
undesirable copying of temporarily-modified data (e.g., for
backtrack search problems) and promote reuse/sharing of
the working space.

4.3.2 Implementation
Such lazy partitioning can be implemented using nested
functions as shown in Figure 16. Each do-two statement is
translated into a piece of code which includes a definition of
a nested function, and each function is translated to have an
additional argument -bk0. This additional argument holds
a nested function pointer corresponding to the newest han-
dler for do-two/do-many statements, which is called when
a task request is detected by polling. The nested function
firstly tries larger task spawning by calling a nested function
which corresponds to an one more older handler. Only if a
task request still remains, a new task is created and sent to
the requester. After sending a task, a worker returns from
the nested function and resumes its own computation.

The nested function composed of bodyafter and bodybefore can
be used to implement a dynamic-wind statement. The trans-
lator also generates functions for sending/receiving and se-

5This construct can be considered as a restartable exception
handler version of the “try-finally” construct.

(def (task tfib)
(def n int :in)
(def r int :out))

(def (task-body tfib)
(= (fref this r)

(fib (fref this n))))

(def (fib n) (wfn int int)
(if (<= n 2)

(return 1)
(begin

(def s1 int) (def s2 int)
(do-two

(= s1 (fib (- n 1)))
(= s2 (fib (- n 2)))

(tfib
(:put (= (fref this n) (- n 2)))
(:get (= s2 (fref this r)))))

(return (+ s1 s2)))))

Figure 15: A T-Cell program for Fibonacci.

(def (fib -bk0 -thr n)
(fn int (ptr (lightweight int)) (ptr thread) int)

(if (<= n 2) (return 1))
(begin

(def s1 int) (def s2 int)
(def this -task-tfib)
(def spawned int 0)
(begin

(def (-bk) (lightweight int) ;nested function
(if spawned (return 0))
(-bk0) ; the nested function of the caller
(if (try-to-get-treq -thr)

(= (fref this n) (- n 2)) ; bodyput
(= spawned 1)
(make-and-send-task -thr 0 (ptr this))
(return 1))

(return 0))
(if (fref -thr -> req) ; polling

(-bk)) ; start backtracking
(= s1 (fib -bk -thr (- n 1)))) ; statement1

(if spawned
(begin

(wait-rslt -thr)
(= s2 (fref this r))) ; bodyget

(= s2 (fib -bk0 -thr (- n 2)))) ; statement2
(return (+ s1 s2))))

Figure 16: Lazy task partitioning implemented by
nested functions.

rializing/deserializing task inputs/outputs for each defined
task.

Task requests can be sent from the same or another compu-
tation node. If a request is from the same node, data of a
task and its result can be passed quickly via shared mem-
ory, otherwise they are transmitted as serialized messages
via base servers. Because the choice is determined auto-
matically, programmers need not to take care of memory
environments.

5. RELATED WORK
See also our previous paper [9] for other language exten-
sions to C, lower-level Scheme, reflection, aspect-oriented
programming, other implementations of pattern-matching
over S-expressions and another S-expression based C.

5.1 Other rule-based transformations
5.1.1 Expert systems

Traditionally expert systems[1] are well known as rule based
solution systems. They use conflict resolution strategies
which deal with more complicated cases.

Although our strategy only uses information about written
orders of patterns and the current rule-set, we may employ
annotations for transformation rule-sets to generate more
sophisticated code (e.g., optimized code).

5.1.2 Rewriting rules
There are program transformation systems that use rewrite
rules[17, 18, 3]. In most such systems, rules are defined
more declaratively and environments for object languages
are included in both patterns and outputs, while our trans-
lators treat such environments basically by using side-effects
or dynamic bindings in Common Lisp.

Though we prefer our approach in perspective of intuitive
implementations of transformations, it is also possible to use
as a framework for implementing rewrite rules by defining
side-effect-free rule-sets.

5.2 Programs as Lisp macro forms
Our system treats SC programs as data. On the other hand,
there are some S-expression based markup languages where
programs themselves are evaluated by a Lisp evaluator as
macro forms and object code is generated as a result[14, 4].

Though such an implementation for SC translators is not
impossible, it would not fit to the SC syntax well because the
translator needs to change valid rules depending on contexts
and most of Lisp macro facilities (including define-syntax

of Scheme etc.) support only lists as patterns.

6. CONCLUDING REMARKS
Using SC language system, we have developed many ex-
tended C languages, and in this process we acquired some
knowledge. For example, we realized that there exists trans-
formations that can be commonly-used (e.g., adding type
information or declarations of variables) and that they can
be reused more efficiently with extensible rule-sets. Now we
actually exploit this system for prototyping newly-invented
languages and testing new implementation techniques, which
can be done very easily. This system can also be used for
implementing languages other than extended SC languages
(e.g., Scheme and Java), which we plan to do as future work.

7. ACKNOWLEDGMENTS
This work was partly supported by the Japan Society for
the Promotion of Science (JSPS), the 21st Century COE
Program (Grant No. 14213201) and MEXT Grant-in-Aid
for Exploratory Research (17650008).

8. REFERENCES
[1] D. G. Bobrow, S. Mittal, and M. J. Stefik. Expert

systems: perils and promise. Commun. ACM,
29(9):880–894, 1986.

[2] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software Practice &
Experience, 18(9):807–820, 1988.

[3] T. Cleenewerck and T. D’Hondt. Disentangling the
implementation of local-to-global transformations in a

rewrite rule transformation system. In SAC ’05:
Proceedings of the 2005 ACM symposium on Applied
computing, pages 1398–1403. ACM Press, 2005.

[4] Franz Inc. HTML generation facility.
http://allegroserve.sourceforge.net/

aserve-dist/doc/htmlgen.html.

[5] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
ACM SIGPLAN Notices (PLDI ’98), 33(5):212–223,
1998.

[6] D. R. Hanson and M. Raghavachari. A
machine-independent debugger. Software – Practice &
Experience, 26(11):1277–1299, 1996.

[7] F. Henderson. Accurate garbage collection in an
uncooperative environment. In Proc. of the 3rd
International Symposium on Memory Management,
pages 150–156, 2002.

[8] T. Hiraishi, X. Li, M. Yasugi, S. Umatani, and
T. Yuasa. Language extension by rule-based
transformation for s-expression-based c languages.
IPSJ Transactions on Programming, 46(SIG1(PRO
24)):40–56, 2005. (in Japanese).

[9] T. Hiraishi, M. Yasugi, and T. Yuasa. Implementing
S-expression based extended languages in Lisp. In
Proceedings of the International Lisp Conference,
pages 179–188, Stanford, CA, 2005.

[10] T. Hiraishi, M. Yasugi, and T. Yuasa. Effective
utilization of existing C header files in other languages
with different syntaxes. Computer Software,
23(2):225–238, 2006. (in Japanese).

[11] T. Hiraishi, M. Yasugi, and T. Yuasa. A
transformation-based implementation of lightweight
nested functions. IPSJ Digital Courier, 2:262–279,
2006. (IPSJ Transaction on Programming, Vol. 47,
No. SIG 6(PRO 29), pp. 50-67.).

[12] ISO/IEC. ISO/IEC 9899:1999(E) programming
languages — C. 1999.

[13] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy
task creation: A technique for increasing the
granularity of parallel programs. IEEE Transactions
on Parallel and Distributed Systems, 2(3):264–280,
July 1991.

[14] K. Rosenberg. LML: The Lisp markup language.
http://lml.b9.com/.

[15] Y. Tabata, M. Yasugi, T. Komiya, and T. Yuasa.
Implementation of multiple threads by using nested
functions. IPSJ Transactions on Programming, 43(SIG
3(PRO 14)):26–40, 2002. (in Japanese).

[16] S. Umatani, H. Shobayashi, M. Yasugi, and T. Yuasa.
Efficient and portable implementation of Java-style
exception handling in C. IPSJ Digital Courier,
2:238–247, 2006. (IPSJ Transaction on Programming,
Vol. 47, No. SIG 6(PRO 29), pp. 1-10.).

[17] E. Visser. Stratego: A language for program
transformation based on rewriting strategies. Lecture
Notes in Computer Science, 2051:357+, 2001.

[18] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building
program optimizers with rewriting strategies. In
Proceedings of the third ACM SIGPLAN International
Conference on Functional Programming (ICFP’98),
pages 13–26. ACM Press, September 1998.

[19] M. Yasugi, T. Hiraishi, and T. Yuasa. Lightweight
lexical closures for legitimate execution stack access.
In Proceedings of 15th International Conference on
Compiler Construction (CC2006), number 3923 in
Lecture Notes in Computer Science, pages 170–184.
Springer-Verlag, 2006.

[20] M. Yasugi, T. Komiya, and T. Yuasa. Dynamic load
balancing by using nested functions and its high-level
description. IPSJ Transactions on Advanced
Computing Systems, 45(SIG 11(ACS 7)):368–377,
2004. (in Japanese).

[21] M. Yasugi, T. Komiya, and T. Yuasa. An efficient
load-balancing framework based on lazy partitioning
of sequential programs. In Proceedings of the
Workshop on New Approaches to Software
Construction, pages 65–84, 2004.

