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Abstract
High-productivity languages for parallel computing become more
important as parallel environments including multicores become
more common. Cilk is such a language. It provides good load bal-
ancing for many applications including irregular ones; that is, it
keeps all workers busy by creating plenty of “logical” threads and
adopting the oldest-first work stealing strategy. This paper proposes
a “logical thread”-free framework called Tascell, which achieves a
higher performance and supports a wider range of parallel envi-
ronments including clusters without loss of productivity. A Tascell
worker spawns a “real” task only when requested by another idle
worker. The worker performs the spawning by temporarily “back-
tracking” and restoring its oldest task-spawnable state. Our ap-
proach eliminates the cost of spawning/managing logical threads.
It also promotes the reuse of workspaces and improves the local-
ity of reference since it does not need to prepare a workspace for
each concurrently runnable logical thread. Furthermore, Tascell en-
ables elegant and highly-efficient backtrack search algorithms with
delayed workspace copying. For instance, our 16-queens problem
solver is 1.86 times faster than Cilk on a system with two dual-core
processors. Our approach also enables a single program to run in
both shared and distributed memory environments with reasonable
efficiency and scalability.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features—Concurrent
programming structures

General Terms Design, Languages, Performance

Keywords load balancing, parallel computing, backtracking, back-
track search

1. Introduction
For efficient parallel computing, all computing resources—such
as cores in cluster nodes—in a system are expected to have their
own work at any given time. However, it is difficult to predict ap-
propriate work allocation statically in heterogeneous or dynami-
cally varying environments involving multitasking operating sys-
tems and/or dynamically joining/leaving computing resources. Ir-
regular applications, such as tree-recursive algorithms and back-
track search algorithms, also make the prediction difficult. In such
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cases, dynamic load balancing, where a task (a piece of work) is dy-
namically allocated to idle computing resources, is effective. Note
that the entire computation should be divided into larger tasks in
order to reduce the total division/allocation costs.

For shared memory environments, Cilk [5] provides good load
balancing in addition to award-winning overall productivity [11].
It succeeds in keeping all workers busy by creating plenty of “log-
ical” threads and adopting the oldest-first work stealing strategy.
Creation of logical threads and their synchronization can simply be
specified with the keywords spawn and sync as extensions to C.
Workers are OS threads provided as virtual computing resources.
Usually, the number of workers does not exceed the number of un-
derlying computing resources so that workers actually run in paral-
lel. Cilk employs the implementation technique called LTC (Lazy
Task Creation) [12], in which each worker spawns plenty of logi-
cal threads and schedules them internally and thus efficiently. An
idle worker (thief) may steal a logical thread from another worker
(victim). That is, logical threads are used as tasks dynamically al-
located to idle workers. When a logical thread recursively spawns
offspring logical threads, the adoption of the oldest-first work steal-
ing strategy is effective in making tasks larger.

This paper proposes a “logical thread”-free framework called
Tascell, which achieves a higher performance and supports a wider
range of parallel environments including clusters without loss of
productivity. A Tascell worker spawns a “real” task only when re-
quested by another idle worker. The worker performs the spawn-
ing by temporarily “backtracking” and restoring its oldest task-
spawnable state.

The contributions of this paper are twofold:

• We propose a new idea for dynamic load balancing, which is
based on “backtracking” and does not use “logical” threads.
A worker performs a computation sequentially with an ability
to perform backtracking-based temporary restoration of task-
spawnable states.

• We discuss how to implement this new idea as an efficient
dynamic load balancing programing/execution framework. We
also discuss its effectiveness in terms of suitable applications
and environments.
Our approach eliminates the cost of spawning/managing logi-
cal threads. It also promotes the reuse of workspaces and im-
proves the locality of reference since it does not need prepare a
workspace for each concurrently runnable logical thread.
Our framework allows programmers to write undo-redo op-
erations to be executed in backtracking. This enables elegant
and highly-efficient backtrack search algorithms with delayed
workspace copying. For instance, our 16-queens problem solver
is 1.86 times faster than Cilk on a system with two dual-core
processors.



int fib (int n) {
if (n <= 2) return 1;
{

int s1, s2;
s1 = fib(n - 1);
s2 = fib(n - 2);
return s1 + s2;

}
}

Figure 1. C program for Fibonacci.

int a[12]; // manage unused pieces
int b[70]; // the board, with (6+sentinel) × 10 cells

// Try from the j0-th piece to the 12th piece in a[].
// The i-th piece for i<j0 is already used.
// b[k] is the first empty cell in the board.
int search (int k, int j0)
{

int s=0; // the number of solutions
for (int p=j0; p<12; p++) { // iterate through unused pieces
int ap=a[p];
for (each possible direction d of the piece) {

... local variable definitions here ...
if (Can the ap-th piece in the d-th direction be placed

on the board b?);
else continue;
Set the ap-th piece onto the board b and update a.
kk = the next empty cell;
if (no empty cell?) s++; // a solution found
else s += search (kk, j0+1); // try the next piece
Backtrack, i.e., remove the ap-th piece from b and restore a.

}
}
return s;

}

Figure 2. C program for Pentomino.

In addition, we adopted message passing for communication
among workers that exchange tasks and results as serialized
task objects. This allows a single program to run in both shared
and distributed (and also hybrid) memory environments with
reasonable efficiency and scalability.

2. Motivation
We introduce two tree-recursive algorithms as examples. These al-
gorithms are traditionally difficult to parallelize with low overhead,
and our approach is effective (even) for them. Note that the sec-
ond example supports parallel loops in a tree-recursive manner. By
using these examples, we discuss the difficulty in this section and
explain the details of our proposal in the next section.

The first example is a doubly recursive algorithm for comput-
ing the n-th term of the Fibonacci sequence. Figure 1 shows a se-
quential C program for it. In each function call, computations of
fib(n − 1) and fib(n − 2) can be executed in parallel. This algo-
rithm has no practical meaning, but this example is often used (e.g.,
in [3, 4, 5, 6, 9, 12, 18, 19]) for evaluating parallel languages; since
each function call has little actual work, the measured overhead
well represents the worst case overhead for similar tree-recursive
algorithms.

The second example is a search algorithm for finding all pos-
sible solutions to the Pentomino puzzle. A pentomino consists of
five squares attached edge-to-edge. There are twelve pentominos of
different shapes. The Pentomino puzzle involves filling the 6 × 10
rectangular board with the twelve pentominos. This problem rep-
resents many similar search problems. Figure 2 shows a sequen-
tial C program for this problem. Each function call iterates through
unused pieces (the outermost loop) and their directions (the inner
loop). Parallelization seems applicable to the outermost loop. How-

// The structure of task objects.
struct tfib {
int n; // input
int r; // output

};
// The entry point of a task.
void exec_fib_task (struct tfib *pthis)
{ pthis->r = fib (pthis->n); }

int fib (int n) {
if (n <= 2) return 1;
{

int s1, s2;
if (choose not to spawn?) {
s1 = fib(n - 1);
s2 = fib(n - 2);

} else {
Allocate a workspace of struct tfib as this.
this.n = n - 2; // put the input value
Send this as a newly spawned task.
s1 = fib(n - 1);
Wait and receive the result of this.
s2 = this.r; // get the output value
Deallocate this workspace.

}
return s1 + s2;

}
}

Figure 3. Straightforward task-parallel program for Fibonacci.

ever, there is an important difference from the Fibonacci program;
this program does backtrack search where states of the board and
the pieces are stored in workspaces: a piece is set at the next avail-
able position by one-step extension and removed by backtracking.

One might simply think that one can achieve efficient load bal-
ancing by restricting task creation according to the “latest” state
(e.g., the number of spawned tasks). Such a straightforward task-
parallel program for Fibonacci can be written as in Figure 3. In
fib(n), each worker chooses whether it executes fib(n-2) by it-
self or it spawns a fib(n-2) task. For efficient load balancing,
each task should be as large as possible so that a minimum suffi-
cient number of tasks are created to keep all workers busy during
the entire running time. That is, for each task, its worker should
choose to spawn a proper number of tasks in the early stage and
then choose not to spawn any more tasks except for adjusting the
completion time. Such a strategy is infeasible without precise infor-
mation (prediction) about the entire execution (not the “latest” in-
formation at the choice point). Thus, this straightforward approach
does not work.

Figure 4 shows a straightforward task-parallel program for Pen-
tomino. For parallelization, the outer for loop in Figure 2 is re-
placed with a PAR_LOOP macro. In PAR_LOOP, each worker chooses
whether it performs all iterations or it spawns a task for the up-
per half of iterations. (In the latter case, it has another choice on
the remaining lower half of iterations with a recursive application
of the PAR_LOOP macro.) This straightforward approach does not
work since it requires an infeasible strategy as in the case of the
Fibonacci program.

In the following sections, we propose our approach with a
feasible strategy for efficient load balancing. Note that the worker
that executes a spawned task often requires its own initialized
(copied) workspace as in Figure 4. This motivated us to make an
additional innovation in our approach.

3. Our approach
We propose a programming and execution framework called “Tas-
cell.” Tascell stands for task cell, which indicates that running tasks
are divided like biological cells. In Tascell, we can spawn a task
lazily by using backtracking.



// The structure of task objects.
// Each worker has to have its own board for parallelization.
struct pentomino {

int s; // output
int k, i0, i1, i2;
int a[12]; // manage unused pieces
int b[70]; // the board, with (6+sentinel) × 10 cells

};
exec_pentomino_task (struct pentomino *pthis)
{ pthis->s = search(pthis->k, pthis->i0, pthis->i1,

pthis->i2, pthis); }

#define PAR_LOOP (_i1, _i2, _body) {
if (choose not to spawn?) {
for(; _i1 < _i2; _i1++) _body

} else {
int _ih = (_i1 + _i2) / 2;
int i1 = _ih; // range for the new sub-task i1--i2
int i2 = _i2;
Allocate a workspace of struct pentomino as this.
{ // put task inputs for upper half iterations

copy_piece_info (this.a, tsk->a); // copy the
copy_board (this.b, tsk->b); // workspace
this.k = k; this.i0 = j0;
this.i1 = i1; this.i2 = i2;

}
Send this as a newly spawned task.
// lower half iterations (expanded n times for n-bit int)
PAR_LOOP (_i1, _ih, _body)
Wait and receive the result of this.
s += this.s; // get the result
Deallocate this workspace.

}
}
// Try from the j1-th piece to the j2-th piece in a[].
// The i-th piece for i<j0 is already used.
// b[k] is the first empty cell in the board.
int search (int k, int j0, int j1, int j2,

struct pentomino *tsk)
{

int s=0; // the number of solutions
int p=j1;
PAR_LOOP(p, j2, {
int ap=tsk->a[p];
for (each possible direction d of the piece) {

... local variable definitions here ...
if (Can the ap-th piece in the d-th direction be placed

on the board tsk->b?);
else continue;
Set the ap-th piece onto the board tsk->b and update tsk->a.
kk = the next empty cell;
if (no empty cell?) s++; // a solution found
else // try the next piece
s += search (kk, j0+1, j0+1, 12, tsk);

Backtrack, i.e., remove the ap-th piece from tsk->b
and restore tsk->a.

}
})
return s;

}

Figure 4. Straightforward task-parallel program for Pentomino.

The sequential computation of the C program in Figure 1
(Figure 2) is outlined as a depth-first, left-to-right traversal of the
invocation tree. Notice that the straightforward task-parallel pro-
gram in Figure 3 (Figure 4) involves the same traversal if its worker
always chooses not to spawn a task.

In Tascell, the worker always chooses not to spawn at first, but
when it receives a task request, it spawns a task as if it changed the
past choice. That is, as is shown in Figure 5 (Figure 6),

1. it backtracks (goes back to the past),

2. it spawns a task (and changes the execution path to receive the
result of the task),

3. it returns from the backtracking (restores the time), and

fib(40)

fib(39)

fib(38)

fib(38)

fib(37)

1. backtrack
2. spawn a task

3. return from
backtracking

4. resume

fib(37)

fib(38)

fib(39)
fib(38)

fib(40)

fib(36)

fib(36) intratask
intertask

after spawning

a task request

Figure 5. Spawning a task lazily while computing fib(40). When a
Tascell worker detects a task request (at fib(37)), it (1) backtracks
to the oldest task-spawnable point, (2) spawns a task for fib(38),
(3) returns from backtracking, and (4) resumes its own computa-
tion.

....

..

..

1. backtrack
(removing pieces)

2. make a copy of the board
and spawn a task

3. return from
backtracking
(setting the
removed pieces)

4. resume

a board copy

after spawning

intratask
intertask

a task request

Figure 6. Spawning a task lazily while performing backtrack
search for Pentomino. Unlike in Figure 5, (1) the backtracking step
includes undo operations (i.e., removing pieces). (2) The spawning-
half-iterations step includes making a copy of the temporarily re-
stored board. (3) The returning-from-backtracking step includes
redo operations (i.e., setting pieces).



4. then it resumes its own task.

Notice that we can spawn a larger task (as is a fib(38) subtree in
the lower right part of Figure 5), in general, by backtracking to the
oldest task-spawnable choice point.1

A Pentomino worker performs a sequential computation effi-
ciently with its own workspace by setting a piece and by removing
the piece (i.e., backtracking or undoing) across search steps. When
the worker spawns a task, it must copy (part of) the “current” con-
tents of its workspace into a newly allocated space for the new task
as in Figure 4. In our approach, the “current” contents should be
equal to the past contents at the time of the past choice. As is shown
in Figure 6, the worker can recover the past contents by performing
proper undo operations along with backtracking as part of Step 1,
it spawns a task with a copy of its workspace at Step 2, and then it
performs proper redo operations as part of Step 3 in order to resume
its own task at Step 4.

To address the problem of load-based inlining, which is essen-
tially the straightforward approach in Section 2, fine-grain multi-
threaded languages such as Cilk [5] and MultiLisp [7] also use a
technique called Lazy Task Creation (LTC) [12]. Our approach dif-
fers from LTC in the following manner:

• Our worker performs a sequential computation unless it re-
ceives a task request. Because no logical threads are created
as potential tasks, the cost of managing a queue for them can be
eliminated.

• In multithreaded languages, each (logical) thread requires its
own workspace. In contrast, our worker can reuse a single
workspace while it performs a sequential computation to im-
prove the locality of reference and achieve a higher perfor-
mance.

• When we implement a backtrack search algorithm in multi-
threaded languages, each thread often needs each its own copy
of its parent thread’s workspace. In contrast, our worker can
delay copying between workspaces by using backtracking.

• Our approach supports (heterogeneous) distributed memory en-
vironments (including mixed-endian environments) without us-
ing distributed shared memory systems.

Note that LTC assumes that the number of really created tasks
(and steals) is incomparably smaller than the number of logical
threads. Our approach also assumes that the number of really
spawned tasks (and steals) is very small. This assumption justifies
our approach, which accepts higher work-stealing (backtracking)
overheads in order to achieve lower serial overheads than more
conventional LTC such as Cilk.

We may use additional constructs in order to specify how to
perform backtracking and undo-redo operations. These constructs
are detailed in Section 4.2.

4. Tascell framework
We designed and implemented a framework to realize our idea. The
Tascell framework consists of a Tascell server and a compiler for
the Tascell language.

4.1 Overview
Figure 7 shows a multistage overview of the Tascell framework.
Compiled Tascell programs are executed on one or more computa-
tion nodes. Each computation node has one or more worker(s) in

1 Tascell can be extended such that, beyond the statistical assumption, we
may spawn larger tasks by individually considering all task-spawnable
points using additional expected task information from users, analyzers,
and/or profilers.

programmer

Tascell server

· · · · · ·
tasktask request

a Tascell program

compiler

result ACK

deploy

user

node
worker2

node node

child n

child 1child 0

child 0
Tascell server

executable file

worker1
worker0

worker0
worker1

worker0

Figure 7. Multistage overview of the Tascell framework.

// The definition of a task named tfib
task tfib {
in: int n; // input
out: int r; // output

};
// The entry point of tfib.
// The task object this is declared implicitly.
task_exec tfib
{ this.r = fib (this.n); }

worker int fib (int n) {
if (n <= 2) return 1;
{

int s1, s2;
do_two // construct in Tascell
s1 = fib(n - 1);
s2 = fib(n - 2);

tfib { // The task object this is declared implicitly.
// put part (performed before sending a task)
{ this.n = n - 2; }
// get part (performed after receiving the result)
{ s2 = this.r; }

} // end of do_two
return s1 + s2;

}
}

Figure 8. Tascell program for Fibonacci.

the shared memory environment (the number can be specified as a
runtime option).

For good load balancing, idle workers should request tasks of
loaded workers. An idle worker sends a task request to either a
specific worker or any worker. Intranode (Internode) messages are
relayed by Tascell runtime systems (Tascell servers), which choose
loaded workers (nodes) for “to any” task requests. Such a series of
messages is exchanged automatically; programmers need not (and
cannot) treat each message directly.

Each task or its result is transmitted as a task object whose
structure is defined in a Tascell program. If a request is from the
same node, (the pointer to) the object can be passed quickly via
shared memory, otherwise the object is transmitted as a serialized
message via Tascell servers.

4.2 Tascell Language
The Tascell language is an extended C language. Figures 8 and 9 are
examples of Tascell programs. (Tascell extensions are underlined.)

Programmers can write a worker program with new constructs
in Tascell, starting with an existing sequential program. Tascell



task pentomino {

out: int s; // output
in: int k, i0, i1, i2;
in: int a[12]; // manage unused pieces
in: int b[70]; // the board, with (6+sentinel) × 10 cells

};
task_exec pentomino {

this.r = search (this.k ,this.i0 ,this.i1 ,this.i2,
&this);

}

worker int search (int k, int j0, int j1, int j2,
task pentomino *tsk)

{
int s=0; // the number of solutions
// parallel for construct in Tascell
for (int p : j1, j2)

{
int ap=tsk->a[p];
for (each possible direction d of the piece) {
... local variable definitions here ...
if(Can the ap-th piece in the d-th direction be placed

on the board tsk->b?);
else continue;
dynamic_wind // construct for specifying undo/redo operations
{ // do/redo operation for dynamic_wind

Set the ap-th piece onto the board tsk->b and update tsk->a.
}
{ // body for dynamic_wind

kk = the next empty cell;
if (no empty cell?) s++; // a solution found
else // try the next piece
s += search (kk, j0+1, j0+1, 12, tsk);

}
{ // undo operation for dynamic_wind

Backtrack, i.e., remove the ap-th piece from tsk->b
and restore tsk->a.

} // end of dynamic_wind
}
}

pentomino (int i1, int i2) // Declaration of this and setting
// a range (i1-i2) is done implicitly

{
// put part (performed before sending a task)
{ // put task inputs for upper half iterations
copy_piece_info (this.a, tsk->a);
copy_board (this.b, tsk->b);
this.k=k; this.i0=j0; this.i1=i1; this.i2=i2;

}
// get part (performed after receiving the result)
{ s += this.s; }
} // end of parallel for

return s;
}

Figure 9. Tascell Program for Pentomino.

has constructs for defining a task and for specifying potential task
division with optional temporary undo/redo operations.

4.2.1 Task definition
A top-level task declaration:

task task-name { [in:|out:] struct-declaration · · · };

gives the structure of task-name task objects. For instance, “task
tfib {in: int n; out: int r};” in Figure 8 declares the
structure of task tfib objects. The syntax is the same as that for
the definitions of structs, except that we may specify an in: or
out: attribute for each field. A Tascell compiler uses attributes to
construct default send/receive methods of the task. In addition, we
can add user-defined send/receive methods in order to skip trans-
mitting (part of) inputs/outputs selectively or allocating/freeing a

workspace (the details are omitted in this paper because of space
limitation).

Definition of entry points A top level declaration

task_exec task-name { body }

defines the computation of a task-name task. In the body (“this.r
=fib(this.n);” in Figure 8), we can refer to the task object by
the keyword this, which includes an input of the task in some
fields, and we should set the result of the computation into appro-
priate fields. In addition, we can call worker functions in the body.

4.2.2 Worker functions
In worker functions, which are specified with the keyword worker
(like cilk procedures in Cilk), we can use Tascell’s task divi-
sion constructs as explained below. Only worker functions (and
task_exec bodies) can call worker functions.

4.2.3 Constructs for task division
A statement:

do_two statement1 statement2
task-name { statementput statementget }

indicates that a computation in statement2 (“fib(n-2)” in Figure 8)
may be spawned during the execution of statement1 (“s1=fib(n-1);”
in Figure 8).2 More precise steps are as follows:

1 The worker executes statement1 with an implicit task request
handler. If it invokes this handler with a task request after
backtracking, it divides the current task by spawning a new
task-name task, setting the fields of the new task object by
statementput (“this.n=n-2;” in Figure 8), and then sending
it to the task requester before returning from the backtracking.
Here, a computation in statement2 is packed as the task object.

2a If the task request handler for do_two is not invoked during the
execution of statement1, statement2 is executed.

2b Otherwise, the worker skips statement2, waits for the result
of the spawned task, and then merges the result by executing
statementget (“s2=this.r;” in Figure 8). In order not to be
idle, the worker should request and execute other tasks while
waiting for the result. In Tascell, the worker simply requests
tasks of the task requester in Step 1 to save its stack size [22].

The identifier task-name specifies the type of a task to be
created. The keyword this can be used in statementput and
statementget to refer to the task object. We should initialize a task
in statementput by assigning values to input fields and can obtain
the result of the task in statementget by referring to output fields.
This series of operations should be equivalent to statement2.

For dividing an iterative computation, Tascell has a parallel for
loop construct syntactically denoted by:

for(int identifier : expressionfrom, expressionto) statementbody
task-name (int identifierfrom, int identifierto)
{ statementput statementget}

2 Although making work amounts of two statements as equal as possible is
a good practice, imbalance and uncertainty are permitted to some degree.
For example, in a simple situation with two workers, the total amount
of unprocessed work decreases rapidly as a product of εi when the i-th
division makes two workers have work amounts in the ratio of 1+εi : 1−εi

(0 ≤ εi < 1).



For example, Figure 9 employs a parallel for statement of “for
(int p: j1, j2) {. . .} pentomino (int i1,int i2) {{. . .}
{s+=this.s}}.” This iterates statementbody over integers from
expressionfrom (inclusive) to expressionto (exclusive). When the
implicit task request handler (available during the iterative execu-
tion of statementbody ) is invoked, the upper half of the remaining
iterations are spawned as a new task-name task. The actual as-
signed range can be referred to in statementput by identifierfrom
and identifierto . The worker handles the result of the spawned task
by executing statementget .

Tascell has a dynamic_wind construct as in the Scheme lan-
guage [10] for defining undo/redo operations, syntactically denoted
by:

dynamic_wind statementbefore statementbody statementafter .

The worker basically executes statementbefore (“set a piece” in
Figure 9 as “do”), statementbody , and statementafter (“remove the
piece” in Figure 9 as “undo”) in this order. However, during the
execution of statementbody , statementafter is also executed as an
“undo” clause before an attempt to invoke an older task request
handler. Statementbefore is also executed as a “redo” clause after
the attempt.

Backtracking-based task division Do_two, parallel for, and
dynamic_wind statements may be nested dynamically in their
statement1 or statementbody . Therefore, multiple task request han-
dlers and undo-redo clauses may be available at the same time
as in Figures 5 and 6. Each worker tries to detect a task request
by polling at every do_two or parallel for statement. When the
worker detects a task request, it performs temporary backtracking
in order to spawn a larger task by invoking as old a handler as pos-
sible. If there are undo-redo clauses on the backtracking path, undo
clauses are executed in turn for the backtracking and redo clauses
are executed in turn for the resumption.

4.2.4 Tascell Programming
We can write the Tascell program in Figure 8 by (1) starting with
the C program in Figure 1, (2) adding the keyword worker to the
procedure fib, (3) finding two statements that can be executed in
parallel, (4) forming a do_two statement with the consideration of
the name and structure of the spawned task, and (5) defining the
structure and body of the task.

We can write the Tascell program in Figure 9 by starting with
Figure 2 as above, except that (1) we find iterations that can be exe-
cuted in parallel if separate workspaces are supplied, (2) we form a
parallel for statement, (3) we prepare some workspace in the task
structure and adjust the access to it, (4) we form a dynamic_wind
statement with existing do/undo operations, and (5) we adjust the
parameter and body of search in order to accept a task with itera-
tions. Notice that this program avoids undesirable workspace copy-
ing and promotes the reuse/sharing of the workspace.

5. Implementation
We implemented a Tascell compiler as a translator to the C lan-
guage in order to make our implementation portable. It is difficult
to realize the backtracking mechanism in “standard” C because it
needs “stack walk,” accessing variables whose values are located
below the current frame in the execution stack. We proposed to im-
plement various language features that require stack walk by using
nested functions. We applied this scheme to implement Tascell.

5.1 Nested functions
A nested function is a function defined inside another function,
in places where variable definitions are allowed except at the top-

int fib(int (*probe_pc0) (int), int n)
{
int pc = 0;
/* nested function */
int probe_pc1 (int k){

if(k == 0) return pc; /* probe variable pc */
return probe_pc0(k - 1); /* probe caller’s variable */

}
if (requested) reply(probe_pc1(depth));
if (n <= 2) return 1;
{

int s1, s2;
pc = 1; /* inc program counter before call */
s1 = fib(probe_pc1, n - 1);
pc = 2; /* inc program counter before call */
s2 = fib(probe_pc1, n - 2);
return s1 + s2;

}
}

Figure 10. Program with nested functions.

level. Its evaluation creates a lexical closure accompanying the
creation-time environment, and indirect calls to it provide legit-
imate stack access. Figure 10 shows an example of a program
with nested functions. When we (indirectly) call the function
probe_pc1 nested in fib, we can access a parameter probe_pc0
and a local variable pc locating in the (older) frame. In this exam-
ple, by using a chain of nested functions, we can probe pc in the
depth-th newest frame.

5.2 Implementations of nested functions
The most well-known implementation of nested functions for C
is the trampoline-based implementation in GCC [1, 15]. However,
maintenance/creation costs of lexical closures in this implemen-
tation are high because it performs runtime code generation and
prevents local variables and parameters that are accessed by nested
functions from being register-allocated.

Therefore, in our previous work, we realized L-closure-based
implementations of nested functions. These implementations achieve
remarkably low maintenance/creation costs by delaying the ini-
tialization of the closure until it is invoked and enabling register
allocation. We have two versions of L-closure implementations: a
translator to standard C (called LW-SC) [8] and an enhancement to
GCC (called XC-cube) [23]. The former allows easy support for
various platforms with existing C compilers, and the latter pro-
vides a higher performance by using assembly-level implementa-
tion techniques.

5.3 Translation to C with nested functions
The program in Figure 8 is translated to the program in Figure 11
with nested functions. Each worker function is translated to have
an additional parameter _bk0 holding a nested function pointer
corresponding to the newest handler for a do_two, parallel for,
or dynamic_wind statement. Each do_two statement is translated
into a piece of code that includes a definition of a nested function
(_bk1_do_two in Figure 11) as the newest handler, which is called
when a task request is detected by polling. The nested function
first tries to spawn a larger task by calling a nested function (_bk0)
that corresponds to the second newest handler (which calls another
nested function for the third newest handler and so on). Only if
a task request still remains, a new task is created and sent to the
requester. After sending a task, the worker returns from the nested
function and resumes its own computation.

A parallel for statement can be translated in the same way
(Figure 12), except that, in the nested function, the worker needs
to calculate a range for a new task and update a range for itself.



int fib(void (*_bk0) (void), struct thread_data *_thr,
int n)

{
if (n <= 2)
return 1;

else {
int s1, s2;
{ /*------------------ do two ------------------*/

struct tfib pthis[1]; // workspace
int spawned = 0; // statement2 is spawned?
{
void _bk1_do_two (void) // nested function
{

if (spawned) return;
_bk0(); // continue backtracking
if (task request exists?) {
pthis->n = n - 2; //statementput
spawned = 1;
make_and_send_task(_thr, 0, pthis); // spawn

}
}
if (_thr->req) // polling

_bk1_do_two (); // start backtracking (call the nested
// function defined above)

{
s1 = fib(_bk1_do_two, _thr, n-1); // statement1

}
}
if (spawned) {
// Get and integrate the result of the spawned task
wait_rslt(_thr);
s2 = pthis->r; // statementget

} else {
s2 = fib(_bk0, _thr, n - 2); // statement2

}
} /*------------------ do two ------------------*/
return s1 + s2;

}
}

Figure 11. Translation result from the worker function fib in
Figure 8, including translation of a do two statement.

Translation for a dynamic_wind statement is also included in
Figure 12. As you can see, statementbody employs a nested func-
tion (_bk2_dwind in Figure 12), which is composed of (a copy
of) statementafter (as undo operations), a call to the second newest
nested function, and (a copy of) statementbefore (as redo opera-
tions), in order to perform undo/redo operations as is described in
Section 4.2.3.

6. Discussion
This section compares our approach to related work.

6.1 Multithread-based load balancing
LTC [12] is one of the best implementation techniques for dynamic
load balancing. In LTC, a newly spawned logical thread is directly
and immediately executed like a usual call while (the continuation
of) the oldest thread in the worker may be stolen by another idle
worker. Usually, the idle worker (thief) randomly selects another
worker (victim) for stealing a task. Cilk employs this technique.

A message passing implementation [3] of LTC employs a
polling method as in Tascell where the victim detects a task re-
quest sent by the thief and returns a new task created by splitting
the present running task. OPA [19], StackThreads/MP [18], and
Lazy Threads [6] employ this technique. Polling methods often im-
prove performance by avoiding “memory barrier” instructions, as
Indolent Closure Creation [16] improves Cilk’s performance.

WorkCrews [21], Leapfrogging [22], and Lazy RPC [4] take the
parent-first strategy; at a fork point, a worker executes the parent
thread prior to the child thread and makes the child stealable for
other workers, and calls the child thread if it has not been stolen at
the join point of the parent thread. Tascell uses a similar strategy;

int search (void(*_bk0) (void), struct thread_data *_thr,
int k, int j0, int j1, int j2,
struct pentomino *tsk)

{
int s = 0; // the number of solutions
{ /*------------------ parallel for ------------------*/
int p = j1; int p_end = j2;
struct pentomino *pthis;
int spawned = 0; // the number of spawned tasks
void _bk1_par_for (void){ // nested function
if (!spawned) _bk0(); // continue backtracking
while (p + 1 < p_end && task request exists?) {
int i1 = (1 + p + p_end)/2,

i2 = p_end; // the range for the sub-task
p_end = i1; // shrink the range for itself
pthis = malloc(sizeof(struct pentomino));

// allocate a workspace
{ //statementput

copy_piece_info(pthis->a, tsk->a);
copy_board(pthis->b, tsk->b);
pthis->k = k; pthis->i0 = j0;
pthis->i1 = i1; pthis->i2 = i2;

}
spawned++;
make_and_send_task(_thr, 0, pthis); // spawn
}

}
if (_thr->req) // polling
_bk1_par_for(); // start backtracking (call the nested function)

for (; p < p_end; p++) {
int ap = tsk->a[p];
for (each possible direction d of the piece) {
// examine the ‘‘i-th’’ (piece, direction)
... local variable definitions here ...
if(Can the ap-th piece in the d-th direction be placed

on the board tsk->b?);
else continue;
{ /*------------ dynamic wind ------------*/
{ // do operation (statementbefore )

Set the ap-th piece onto the board tsk->b and update tsk->a.
{
void _bk2_dwind (void) // nested function
{
{ // undo operation (statementafter )

Backtrack, i.e., remove the ap-th piece from tsk->b
and restore tsk->a. }

_bk1_par_for(); // continue backtracking (call the
// nested function defined above)

{ // redo operation (statementbefore )
Set the ap-th piece onto the board tsk->b
and update tsk->a. }

}
{ // statementbody

kk = the next empty cell;
if (no empty cell?) s++; // a solution found
else // try the next piece
s += search (_bk2_dwind, _thr,

kk, j0+1, j0+1, 12, tsk);
}
}
{ // undo operation (statementafter )

Backtrack, i.e., remove the ap-th piece from tsk->b
and restore tsk->a. }

} /*------------ dynamic wind ------------*/
}

}
while (spawned-- > 0) {
// Get and integrate results of spawned tasks
pthis = (struct pentomino *)wait_rslt(_thr);
s += pthis->s; // statementget
free(pthis); }

} /*------------------ parallel for ------------------*/
return s;
}

Figure 12. Translation result from the worker function search
for Pentomino in Figure 9, including translation of a parallel for
statement and a dynamic wind statement.



however, creations of stealable entities are delayed and mostly
omitted.

Lazy Threads [6] realizes further optimization for spawning
a thread by translating it into a parallel ready sequential call.
It achieves a lower thread creation cost than the original LTC
by avoiding operations for queueing a new thread. However, this
technique can be applied only for consecutive forks. Furthermore,
it is unclear how this technique can coexist with the oldest-first
work stealing strategy.

Our approach is “logical thread”-free, but its ability to restore
task-spawnable states without loss of good serial efficiency de-
pends heavily on L-closures and the notion of lazy stack frame
management [8, 23]. The idea of lazy frame management can
also be applied to logical threads. Indolent Closure Creation [16]
employs this idea for Cilk; its technique of using a shadow
stack is similar to the lazy validation of an explicit stack in our
transformation-based implementation [8] of L-closures. Moreover,
our previous work [19] shows that the notion of “laziness” is ef-
fective for modern multithreaded languages with thread IDs and
dynamically-scoped synchronizers.

We can find few pieces of recent work that make remarkable
advances following the abovementioned techniques; for example,
X10’s thread (or activity) creation and synchronization are inspired
by Cilk, and they do not propose a new technique for load balanc-
ing [2]. This means that the LTC/Cilk-originating ideas of “logical
threads” for load balancing reach maturity.

Notice that our proposal is to employ different semantics from
multithreading rather than to reduce costs for multithreading. Our
approach enables further performance improvement by reusing a
workspace and delaying copying between workspaces. This is the
case in most multithreaded languages other than Cilk. In Cilk, a
pseudovariable SYNCHED is provided, which promotes the reuse of a
workspace among child logical threads [17]; however, child threads
cannot share a workspace with their parent thread.

Except for not using a “logical thread,” our usage of multiple
workers is quite usual; thus, our framework can be enhanced with
existing/new techniques proposed in previous/future work for other
aspects of parallel computing, such as duplicate elimination (espe-
cially, in search algorithms) and efficient data placement.

6.2 Distributed memory environment support
Tascell supports distributed memory environments (including mixed-
endian environments) by transmitting inputs and outputs as serial-
ized task objects among computation nodes. This support works
well if the task size (work amount) is large enough to make the
communication cost relatively low. Programmers can write a sin-
gle program for both shared and distributed memory environments
because the interface for passing task objects is integrated. Fur-
thermore, it is easy for new computation nodes to join a running
computation dynamically.

Distributed Cilk [14] and SilkRoad [13] employ DSM (Dis-
tributed Shared Memory) to support distributed memory environ-
ments. DSM is useful to support globally shared data. For this pur-
pose, we may also employ additional libraries or language support.

6.3 Productivity
Tascell provides high productivity in the sense that we can write
a Tascell program by augmenting an existing C program, as de-
scribed in Section 4.2.4. The resulting program would be much
simpler than library-based parallelizing frameworks such as TBB [9].
However, when compared to Cilk programs, Tascell programs are
more verbose; we need to define tasks and write statements for
task inputs/outputs. These costs are necessary for (1) (general) dis-
tributed memory environment support and (2) more exact control
of workspaces in task objects with and without dynamic_wind.

Tascell server computation node
(Tascell/Cilk)

CPU AMD Opteron 244
1.8GHz

AMD Dual Core
Opteron 265 1.8GHz×2
(4 cores in total)

OS Rocks 4.0 (Linux kernel 2.6.9)

compiler

Allegro Common Lisp 8.1
with (speed 3)
(safety 1) (space 1)
optimizers

GCC 3.4.3 with -O2
optimizers
Tascell compiler + LW-SC
(in Tascell)
Cilk version 5.3 (in Cilk)

worker —
created by
pthread create with
PTHREAD SCOPE SYSTEM

internode
communication
(Tascell)

Each computation node is TCP/IP connected to the
single Tascell server on Gigabit Ethernet.
A node having a task does not send a “to any” task
request to another node.

Table 1. Evaluation environment.

Of course, we may use a more concise description if we limit our
language to support only shared memory environments or some
limited patterns of parallel computation.

7. Evaluation
In this section, we evaluate the performance of the Tascell frame-
work using the following programs:

Fib(n) recursively computes the n-th Fibonacci number.

Nqueens(n) finds all solutions to the n-queens problem.

Pentomino(n) finds all solutions to the Pentomino problem with
n pieces (using additional pieces and an expanded board for
n > 12).

LU(n) computes the LU decomposition of an n × n matrix.

Comp(n) compares array elements ai and bj for all 0 ≤ i, j < n.

Grav(n) computes a total force exerted by (2n + 1)3 uniform
particles.

Nqueens in Tascell is coded with a combination of a parallel for
and a dynamic_wind in the same way as Pentomino. LU and Comp
use cache-oblivious recursive algorithms with do_two constructs.
A Comp task to compare arrays of size n and m (n ≥ m) is
divided into two tasks with arrays of n/2 and m. Grav is an iterative
application. It is implemented in Tascell as triply nested parallel
for loops corresponding to three axes. Note that we used fine-
grained implementations for these applications.

The evaluation environment is summarized in Table 1.
In order to evaluate serial overheads, we ran the Tascell pro-

grams with one worker and compared their execution time with
C and Cilk programs in almost the same algorithms. For Nqueens,
Pentomino, and Grav in Cilk, each thread requires its own workspace
to hold one or more arrays. Furthermore, for Nqueens and Pen-
tomino, each thread needs its own copy of its parent thread’s
workspace even when SYNCHED is used, resulting in consider-
able copying overhead. In Tascell, the worker can reuse a single
workspace while it performs a sequential computation as is shown
in Section 3.

The results of the performance measurements are shown in
Table 2. The overheads in Tascell, which arise from polling and
managing nested functions, are considerably lower than Cilk for
almost all applications. In particular, Fib shows a sharp contrast in
overheads because the frequent creation of logical threads causes
a higher overhead in Cilk. Nqueens shows a higher contrast than
Pentomino because of more frequent copying. LU shows virtually



Elapsed time in seconds
(relative time to plain C)

C Cilk Cilk w/o Tascell Tascell
SYNCHED w/ copying

Fib(40) 0.926 7.15 — 2.30 —
(1.00) (7.72) (2.48)

Nqueens(15) 10.3 29.8 37.1 15.8 25.4
(1.00) (2.89) (3.60) (1.53) (2.47)

Pentomino(12) 1.68 2.37 2.74 2.19 2.80
(1.00) (1.41) (1.63) (1.30) (1.67)

LU(2000) 8.66 8.54 — 8.69 —
(1.00) (0.986) (1.00)

Comp(30000) 4.31 7.84 — 5.42 —
(1.00) (1.82) (1.26)

Grav(200) 3.35 7.01 — 4.55 —
(1.00) (2.09) (1.35)

Table 2. Execution time (and relative time to sequential C pro-
grams) with one worker. In Nqueens and Pentomino of Cilk,
we partially avoided needless allocation of workspaces by using
SYNCHED. We used SYNCHED only for avoiding needless allocation;
initialization of workspaces was always done by copying between
workspaces. In “w/o SYNCHED”, SYNCHED was not used; allocation
was performed for every spawned logical thread. In “w/ copying”
of Tascell, we performed artificial workspace allocation and copy-
ing between workspaces for each spawnable task.

zero overheads in both Cilk and Tascell because the potential task
division is infrequent.

The additional overheads in Cilk can be broken down as fol-
lows:

(a) cost of explicit frame management,

(b) cost of the THE protocol [5] for consistent access to the logical
thread queue, and

(c) cost of copying between workspaces for each thread (for Pen-
tomino and Nqueens).

The copying overhead can be estimated as the difference be-
tween Tascell programs with and without the artificial copying
shown in Table 2. The effect of reusing allocated workspaces in
Cilk with SYNCHED can be estimated as the difference shown in
Table 2.

Figure 13 summarizes the results of performance measure-
ments with multiple workers in a shared memory environment.
In all benchmarks except LU, Tascell shows higher efficiency (see
Figure 13’s caption) than Cilk because of Tascell’s lower serial
overheads. For instance, we achieved a speedup of 1.86 times
(= 0.692/0.372) as compared with Cilk in Nqueens(16) with 4
workers. Tascell’s relative efficiency degradation in Fib with mul-
tiple workers is larger than Cilk’s because Tascell’s overheads for
intranode communication are higher, although Tascell’s absolute
efficiency is considerably higher than Cilk’s. The sudden efficiency
drop in LU and Grav with 4 workers may be caused by memory
bandwidth saturation.

The logarithmically scaled graphs in Figure 14 show the results
of performance measurements on multiple computation nodes. 3

When a single worker is running in each node (Figure 14 (a)),
the programs except LU exhibit good speedups because their com-
putation times are sufficiently long relative to the communication
costs among computation nodes for the small numbers of spawned
tasks; that is, the potential bottleneck around the Tascell server is
insignificant in most applications. In contrast, we could not ob-
tain the speedups in LU. To the best of our knowledge, it is diffi-

3 We evaluated only Tascell because the standard implementation of Cilk
only supports shared memory environments.
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cult to obtain sufficient speedups in applications with large shared
data such as LU with work-stealing-based dynamic load balanc-
ing without efficient support for (distributed) shared memory, as
experienced also in [20], since dynamically stolen (transmitted)
tasks/results must involve large submatrices.

In environments where multiple workers are running in each
node (Figure 14 (b1), (b2)), the workers run with both internode
and intranode communication. Figure 14 (b2) shows that we can
get a good speedup also in such an environment as long as the size
of a problem is sufficiently large relative to the number of workers
(e.g., > 4s for each worker). The speedups in Comp are limited
because transmission costs of O(n) do not pay for small n since
the time complexity of Comp is O(n2).

We can improve the performance in distributed memory envi-
ronments by improving the message handling of a Tascell server or
employing some mechanism for sharing data among computation
nodes.

8. Conclusion and Future work
We proposed a new scheme for dynamic load balancing on the basis
of backtracking. Our scheme is useful especially for backtrack
search algorithms where overheads are strongly reduced by delayed
copying between workspaces, and we can write such algorithms
elegantly. In addition, our scheme enables many applications to run
more efficiently by allocating workspaces lazily and eliminating the
cost of creating/managing logical threads. Furthermore, our task-
object-based parallel programming model enables programs to be
easily written and executed for both shared and distributed (and
also hybrid) memory environments.

We will try to improve the performance in distributed memory
environments by implementing more sophisticated message han-
dling among computation nodes or lazy and/or asynchronous data
transmission, which will also alleviate potential bottlenecks around
Tascell servers. We will also implement a mechanism to enable
computation nodes to leave safely.
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