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Abstract: We are developing a job level parallel scripting language called Xcrypt, which helps us run a single
program a number of times with different parameter values under computing environments where jobs are
managed by a batch scheduler, such as supercomputers. Because Xcrypt is implemented as an extension to
Perl, Xcrypt users are required to write Perl-based scripts. This becomes a barrier for programmers of other
scripting languages when using Xcrypt. To solve this problem, we developed a framework that enables us
to implement interfaces for using Xcrypt functionalities in other languages at a reasonable cost. To reuse
existing Xcrypt implementations, we designed an RPC protocol between Perl and other languages. This
protocol supports remote references to objects in another process, as well as callback functions. We can use
Xcrypt APIs in any language by invoking Perl functions using RPCs. In our framework, Xcrypt extension
modules, which Xcrypt users can implement as class extensions based on object oriented programming in
Perl, can also be defined and used in any supported language. This paper also describes an example of a
performance tuning of an electromagnetic field analysis simulation program performed with a Ruby-based
parallel script that uses an extension module implemented in Lisp.
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1. Introduction

We need to parallelize computations for effective use of

large-scale computing resources. Parallelization is done not

only at the program level using OpenMP and/or MPI, but

also at the job level by running a single program with dif-

ferent parameters in parallel.

Parameter sweeps for a car body design or, drug discovery

are real examples of job-level parallelism; we often execute a

single simulation program a number of times under different

conditions. Job-level parallelism is also useful for the static

automatic tuning of software by measuring the execution

performance of a single program with various performance

parameter settings [1], [2].

In most practical supercomputer systems, including the

ACCMS supercomputer at Kyoto University and the “K

Computer,” computer resources are managed by a batch

scheduler such as NQS [3], LSF [4], SGE [5], or Torque [6].

In such environments, we cannot run a user program by

only executing a shell command; we need to write a job

script in which the amount of computing resources and the

commands to be executed are described, and submit the job
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to a job queue managed by the scheduler. The scheduler

assigns the job to the resources and executes when a suffi-

cient amount of available resources is detected for the job

when considering the amount of free computing resources

the user can utilize, the fairness among all system users,

and so on. Of course, we can submit multiple jobs simulta-

neously, which can be executed in parallel as long as com-

puting resources remain available.

We call the type of parallelism employing jobs in batch

schedulers as parallelization units, “job parallelism.” Be-

cause we can impose the management of computing re-

sources onto the back-end scheduler in such environments,

it seems easy to write job-level parallel programs in pre-

existing script languages such as Perl or Ruby. However,

many hard to implement tasks remain, such as generating

job scripts for job submissions, and the management and

synchronization of submitted jobs.

Furthermore, interfaces of batch schedulers, e.g., a shell

command for submitting/checking/killing jobs, and a gram-

mar for the job scripts, differ among batch scheduler imple-

mentations. Therefore, to reuse a job script in other sys-

tems, we need a mechanism for handling such differences. It

is not difficult to implement such a mechanism, but a situa-

tion in which each supercomputer user implements his/her

own mechanism is undesirable when considering of the over-

all productivity. We should therefore use a common pro-

gramming environment.
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To achieve this, we developed a script language called

Xcrypt [7], [8] for job-level parallel programming. This lan-

guage is based on Perl, and various additional features are

added to facilitate the easy description of job-level parallel

processing.

In Xcrypt, a job is abstracted as a job object, and we can

write a job submission simply as an asynchronous procedure

call with the job objects given as arguments. Differences in

system interfaces are handled by (Perl-based) configuration

scripts. Because configuration scripts are written separately

from Xcrypt scripts, end users do not need to be concerned

about the differences in interfaces. In addition, Xcrypt has a

resume function; even if submitted jobs or the Xcrypt pro-

cess is aborted, we can restore the original state quickly.

Furthermore, Xcrypt has a mechanism for adding various

useful features, such as limiting the number of simultane-

ously running (or queued) jobs, as modules.

Because Xcrypt is implemented as an extension to Perl,

users need to write Perl-based scripts as user scripts or ex-

tension modules. We believe Perl is a suitable base language

because its grammar is similar to C, and it can be easily used

by many computational scientists. However, this limitation

is a barrier for programmers who are familiar with other

script languages such as Ruby or Python. Furthermore, we

often write scripts using typical features of languages other

than Perl, such as interactive environments in Lisp or lazy

evaluations in Haskell.

This paper proposes a mechanism enabling us to add an

interface that allows end users to use Xcrypt features in

other languages besides Perl. To reuse the existing im-

plementation of Xcrypt for Perl, Xcrypt interfaces for a

foreign language are realized using remote procedure calls

(RPCs) between Perl and the foreign language. We also de-

signed an RPC protocol called Xcrypt-RPC for such RPCs.

This protocol employs JSON [9] as a data representation,

and supports remote references of job objects and callback

functions among different languages. A supported language

can be added by implementing the Xcrypt-RPC for that

language. Furthermore, we enabled extension modules for

Xcrypt, which are implemented as class extensions in object-

oriented Perl in the original Xcrypt, to be implemented in

any supported language and used from user scripts in any

supported language.

Note that we proposed a Common Lisp interface for

Xcrypt in [10]. This current paper proposes a mechanism

for adding support for languages other than Common Lisp,

and for enabling us to define and use extension modules in

other languages besides Perl.

The remainder of this paper is organized as follows. We

describe Xcrypt in Section 2. In Section 3, we clarify the goal

of this research and provide an overview of how to realize

multilingualization for Xcrypt using RPCs. Based on this

overview, we describe a user interface of the multilingualized

Xcrypt in Section 4. We then provide the design details and

implementation of Xcrypt-RPC in Section 5. We describe

the performance evaluations in Section 6, and present other

work related to this topic in Section 7. Finally, some con-

cluding remarks and a description of future work are given

in Section 8.

2. Xcrypt: a Job-Level Parallel Script

Language

This section overviews the design and implementation of

Xcrypt. In this paper, we do not describe the advanced

features of Xcrypt, such as the handling of interface differ-

ences between systems or a fault resiliency support to restore

the original state after a system failure. Refer to [8] for a

description of these features and the details of the Xcrypt

implementation.

2.1 User Scripts

2.1.1 Declaration of Modules Used

An Xcrypt script should begin with a declaration of the

modules to be included:

use base qw(module-name1 module-name2 . . . core);

Module-name1 module-name2 . . . enumerates the extended

modules used. Note that the core module realizes the core

features of job objects, and must be included in the module

list.

2.1.2 Creating Job Objects

To create job objects, the prepare function is used as fol-

lows:

@jobs = prepare (%template)

%template is a job template object defined as a hash ob-

ject that contains job information. Table 1 shows impor-

tant keys that a template object should contain. The mem-

bers before and after are defined as the preprocessing and

postprocessing of each job, respectively. Their values are

references of the function objects. The before function is

invoked before submitting the job, whereas the after func-

tion is invoked after the job is completed.

When the input template object contains RANGEn as its

member, the prepare function creates multiple job objects.

In this case, the created job objects are given different ids by

postfixing sequential numbers: for example, the return value

of prepare (’id’=>’example’, ’RANGE0’=>[1..100]) is

an array of job objects, whose k-th object id is examplek.

When the values of the members RANGE0, RANGE1, . . . of the

template object are arrays with lengths of n1, n2, . . ., re-

spectively, (n1 × n2 × . . .) job objects are created.

We can ensure that the member values of the created job

objects differ by postfixing @ to the member names, such as

arg0_0@, and we set a function to the corresponding mem-

ber value; the member value of each created job object is the

return value of the given function. In the function body, the

assigned element of RANGEn can be referred to as a (n+ 1)-
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Table 1 Important keys of job template objects.

Name (n, m: integers equal to or greater than 0) Meaning

id a string to identify the job
exen a command line to be executed as the job execution

(exe0, exe1, . . . , exen are executed in this order)
argn_m The m-th command line option of exen
JS_cpu # of CPUs required for the job
JS_node # of nodes required for the job
JS_queue name of the queue to which the job is submitted
before a procedure invoked before submitting the job
after a procedure invoked after the job is completed
RANGEn extraction ranges from the template

th*1 argument or by $VALUE[n].

The created job objects basically inherit the members of

the template object and their values. In addition, the job

objects have additional members, such as a member indicat-

ing the current state (e.g., running, completion) of a job. We

can submit jobs by applying the Xcrypt function explained

in the next section to job objects.

2.1.3 Submitting Jobs

We can submit jobs using the submit function as follows:

submit (@jobs)

@jobs should be an array of job objects created by the

prepare function. All jobs contained in the array are sub-

mitted.

The details of the submit function are as follows. The

submit function creates a thread, called a job thread, for

each job object, as explained in Section 2.1.2. The task of a

job thread is as follows.

( 1 ) Invoke the user-defined before function.

( 2 ) Invoke all before methods defined in the declared mod-

ules in the use base, from left to right.

( 3 ) Invoke the start method defined for the leftmost mod-

ule among the modules used. The start method in

the core module, which is invoked under usual settings,

generates a job script, and submits a job by using the

submission command provided by the underlying batch

scheduler (e.g., /usr/bin/qsub).

( 4 ) Wait for the submitted job to be completed.

( 5 ) Invoke all after methods defined in the declared mod-

ules in the use base, from right to left.

( 6 ) Invoke the user-defined after function.

The submit execution is completed after the creation of

the job threads.

Lightweight job threads are created using the Coro CPAN

module [11], which enables us to create thousands of threads

with a reasonable performance overhead.

2.1.4 Waiting for Jobs to Finish

We can wait for jobs to finish using the sync function:

sync (@jobs)

This function waits for all job threads corresponding to the

*1 This misalignment occurs because the first argument is a ref-
erence to the job template object given to prepare.

use base qw(limit core); # use the limit module
limit::initialize(10);

%template = (
’id’ => ’psweep’, # job’s ID
’RANGE0’ => [1..5000], # extraction range
’exe0@’
=> sub {"./a.out input$VALUE[0] output$VALUE[0]"}
’after’
=> sub { print "Job $_[0]->{id} finished."}

);
# prepare_submit_sync(%template); is also allowed
@jobs = prepare (%template);
submit (@jobs);
sync (@jobs);

Fig. 1 Perl-based Xcrypt script for a parameter sweep.

job objects included in the array @jobs to be finished.

2.2 Extension Modules

When only the core module is used, all job objects cre-

ated by the prepare function are instance objects of the

core class. Developers of Xcrypt libraries can extend Xcrypt

by extending the core class.

The extension module implementation is based on the

manner in which the class extension is carried out in object-

oriented Perl programming. In addition, some method

names in Xcrypt have a special meaning. For example, as

explained in Section 2.1.2, methods called before, after,

and start are used for extending the preprocessings, post-

processings, and job submissions, respectively.

The declaration of the modules used by end users is as

follows:

use base qw(module-name1 module-name2 . . . core);

As explained in Section 2.1.1, this declaration lets the class

for the job objects to have all the classes of the module-

name1 module-name2 . . . core as superclasses. We use the

NEXTmodule [12] for enabling end users to write the modules

used in the same place, and letting the module-namek−1

class behave as a child class of the module-namek class.

Using the NEXT module, we can invoke method

m of module-namek by executing $module-

namek−1->NEXT::m(@args) in the body of the method m

of module-namek−1 (if m is not defined in module-namek,

the first defined m of module-namek+1, module-namek+2,

. . . is called).
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package limit;

use strict;
use NEXT;
use Coro::Semaphore;

my $smph;

sub initialize { $smph = Coro::Semaphore->new($_) }

sub new {
my $class = shift;
my $self = $class->NEXT::new(@_);
return bless $self, $class;

}

sub before {$smph->down;}
sub after {$smph->up;}

Fig. 2 Definition of the limit module.

2.3 Example

Fig. 1 shows a simple Perl-based Xcrypt script for sub-

mitting 5000 jobs executing the single program a.out; each

job uses a different command line argument.

Because the job template object has the member RANGE0

with the value [1..5000], the prepare function generates

5000 job objects with ids psweep1–psweep5000. The com-

mand line to be executed in a job is defined by exe0@.

Because the template has the member RANGE0 with the

value [1..5000], the prepare function generates 5000 job

objects with ids psweep1–psweep5000. The command line

to be executed in a job is defined by exe@. Because the com-

mand line arguments (input and output file names) differ

from job to job, the member name is postfixed by “@” and

its value is a procedure. In the function body, $VALUE[0]

binds the corresponding value in the range of 1 to 5000.

An array of job objects generated by the prepare function

is passed to the submit function, which submits all the jobs

corresponding to the job objects in the list. Each submitted

job is added to a job queue managed by a batch scheduler.

When a queued job becomes executable, the scheduler as-

signs the resources to the job and executes it. Note that

multiple jobs can run in parallel as long as the comput-

ing resources can be assigned. When each submitted job is

completed, the computing resources are released, and the

procedure set as the value of the after member is invoked.

In this script, the message is printed to the standard output.

This script limits the simultaneous running (or queued)

of jobs to ten using the limit extension module. This mod-

ule is implemented as shown in Fig. 2. When this module

is used, a semaphore is acquired before the submission of

each job, and is released after the completion. The number

of simultaneously running (or queued) jobs cannot exceed

the number set by limit::initialize because job threads

with excess jobs wait to acquire a semaphore.

3. Development Strategy

This section clarifies our goal and describes our reason

for employing RPCs to achieve the multilingualization of

Xcrypt. We then discuss the required specifications of the

RPC protocol and how to implement it.

require "client.rb"
xcrypt_init "limit", "core" # Use the limit module.

# The number of simultaneous jobs is limited to 10.
xcrypt_call("limit::initialize", 10)

jobs = prepare (
’id’ => ’psweep_rb’, # prefix of jobs’ ID
’RANGE0’ => [*1..5000], # creates 5000 jobs

# The return value of the function is used as a command.
’exe0@’ => lambda|this, *args|
"./a.out #args[0]"

,
’after’ => lambda |this| # executed after job completion
puts "Job #get(this,’id’) finished";

)

submit(jobs) # submits jobs
sync(jobs) # waits for completion of jobs

Fig. 3 Ruby-based Xcrypt script for a parameter sweep.

(xcrypt-init "limit" "core") ; Use the limit module.

;; The number of simultaneous jobs is limited to 10.
(xcrypt-call "limit::initialize" 10)

(setq
jobs
(prepare
’((:id . "psweep") ; prefix of jobs’ ID
(:RANGE0 . ,(loop for x ; creates 5000 jobs

from 1 upto 5000 collect x))
;; The return value of the function is used as a command.
(:exe0@ . ,#’(lambda (tmpl &rest vals)

(format nil
"./a.out input~A output~A"
(nth vals 0) (nth vals 0))))

;; executed after job completion
(:after . ,#’(lambda (job &rest vals)

(format t
"Job ~A finished."
(jobobj-get job "id")))))))

(submit jobs) ; submits jobs
(sync jobs) ; waits for completion of jobs

Fig. 4 Lisp-based Xcrypt script for a parameter sweep.

3.1 Our Goal

Our goal is to enable developers to add an interface en-

abling end users to use the functionalities of Xcrypt in other

languages than Perl with reasonable implementation costs.

We use the term “a supported language” to refer to a

language that can use the functionalities of Xcrypt through

an implemented interface, including Perl. That is, we can

write user scripts and definitions of modules corresponding

to Figs. 1 and 2 using the supported languages.

For example, after Ruby and Common Lisp are added as

supported languages, we can execute user scripts such as

shown in Fig. 3 (Ruby) and Fig. 4 (Common Lisp), and

define the extension modules using scripts such as those

provided in Fig. 5 (ruby) and Fig. 6 (Common Lisp). In

addition, the extension modules defined in any supported

language can be used in user scripts written in any sup-

ported language.

3.2 Implementation Strategy of Multilingualiza-

tion

This section discusses how to implement the multilingual-

ization of Xcrypt.

One strategy is to re-implement Xcrypt in other lan-

guages. The advantages of this strategy are a better perfor-
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### list of public methods
### export: initialize initially finally

require ’thread’
require ’xcrypt_lib.rb’ # tools for defining Xcrypt modules
include XcryptLib #

module Limit
module_function

def initialize(n)
@lock = Mutex.new
@n = n

end

def initially(*args)
while_cond = true
while while_cond
@lock.synchronize {
if @n>0

@n -= 1
while_cond = false

else
Thread.pass

end
}

end
end

def finally(*args)
@lock.synchronize { @n+=1 }

end

def start(job)
xcrypt_call_next(job) # calls an ancestor method

end
end

Fig. 5 Definition of the limit module in Ruby.

;; list of public methods
;; export: initialize initially finally

(require :process)

;; defines a package
(defpackage "LIMIT_LSP"
(:nicknames "LIMIT")
(:use "CL" "CL-USER"))

;; changes a current package
(in-package :limit)

;; defines a semaphore and sets to a global variable
(defparameter *semaphore* (mp:make-gate nil))

;; defines methos
(defun initialize (n)
(setq *semaphore* (mp:make-gate nil))
(loop repeat n

do (mp:put-semaphore *semaphore*)))

(defun initially (self &rest vals)
(mp:get-semaphore *semaphore*))

(defun finally (self &rest vals)
(mp:put-semaphore *semaphore*))

Fig. 6 Definition of the limit module in Lisp.

mance and the ability to use the libraries in each language

effectively. However, both maintenance and implementation

costs are high since we need to modify the implementations

of all the supported languages when the Xcrypt specifica-

tion is modified. Furthermore, since function calls among

languages are not supported, we cannot use extension mod-

ules defined in another language, which is described as a

requirement in Section 3.1.

Another possible strategy is to compile both the imple-

mentation code of Xcrypt and user scripts into object files

and link these files together. This strategy is common in

linking C and Fortran programs since the basic data struc-

tures and calling conventions used in these languages are the

same. However, it is difficult to apply this strategy to script

languages because each script language usually has its own

execution mechanism. It is not impossible to implement a

runtime system that knows the execution mechanisms of all

of the supported languages such as “Perl for Ruby Mod-

ule” [13], which is a runtime system created by linking Perl

and Ruby interpreters. However, maintenance costs of such

a system are high since we have to follow version upgrades

of all the interpreters. Furthermore, the costs explode as the

number of supported languages increases. Thus, this strat-

egy is inappropriate for application in systems that should

be maintained for a long period of time.

We therefore employed RPCs; we ran both the Xcrypt

process and the processes of the supported languages in

which the user scripts and extension modules are defined,

and use the functionalities of these other languages and

transfer the data among the processes using the RPCs. This

strategy allows us to use the functionalities among the lan-

guages used without modifying each language implementa-

tion.

3.3 Required Specification and Implementation

of the RPC Protocol

To achieve multilingualization of Xcrypt using RPCs, we

designed a new RPC protocol called Xcrypt-RPC. This sec-

tion discusses the required specifications of Xcrypt-RPC and

shows the design of the protocol used to satisfy these require-

ments.

3.3.1 Data Transfer

To design Xcrypt-RPC, we should first decide how the

data are to be transferred among the languages when calling

a function of another language and returning from it. Com-

monly, a pass-by-value or pass-by-reference is used to trans-

fer data among the processes. For example, when transfer-

ring an array, all elements of the array are passed in the

pass-by-value, and a pointer to the first element is passed in

the pass-by-reference.

When all the processes employ a common representation

for structural data, the call-by-reference is effective since

we can transfer data flexibly in both directions. For exam-

ple, we can update remote objects efficiently. However, data

representations employed by most implementations of script

languages differ from each other. In such a case, it is difficult

to access elements in the structural data of other languages

using references to the data. Another issue is that objects

in most script languages are managed through garbage col-

lection (GC); all data references among the processes must

be managed in order to allow the collectors to collect the

objects properly, which is difficult to implement.

The pass-by-value is easier to implement than the pass-

by-reference. Differences in data representations among lan-

guages can be bridged by transferring the data using an

intermediate data representation. All each language has to

know is the method for serializing and deserializing the data

representations in the language and the intermediate data

c⃝ 1992 Information Processing Society of Japan 5



Journal of Information Processing Vol.0 No.0 1–16 (??? 1992)

representation; each language does not need to know about

the data representations in the other languages.

We employ this implementation strategy and use JSON as

the intermediate data representation. We employ JSON be-

cause there are pre-existing JSON libraries for many script

languages including Perl, Ruby, and Python. JSON is so

flexible that it can represent many types of commonly used

structural data. In addition, since most Xcrypt functions do

not have side effects to their arguments, most data transfers

needed in Xcrypt are achieved using this transfer mecha-

nism.

Although JSON can represent most structural data in

simple descriptions, some types of data cannot be serial-

ized to a JSON representation. For example, file handles

and functions in Perl cannot be serialized, and it is diffi-

cult to transfer such data among different languages. How-

ever, for practicality, we need to transfer functions and job

objects (Section 2.1.2) among languages. We therefore de-

signed Xcrypt-RPC to support the transfers of these objects

as follows.

• A job object contains information managed by a job

management thread in an Xcrypt (Perl) process, such

as the status of the job, and this information is up-

dated asynchronously. Therefore, if we use the pass-by-

value to transfer job objects, it is difficult to achieve

consistency among replicas. A job object also contains

data that are difficult to be serialized, such as a job

thread. In addition, a job object sometimes contains

a large amount of structurally-complex data, which re-

quire high copying costs. Therefore, we use the pass-

by-reference to transfer job objects; when a transfer of

a job object to a non-Perl language is requested, an ID

string of the job object is sent instead of a serialized

object. The non-Perl process that receives the ID cre-

ates a proxy object corresponding to the ID. This proxy

object provides interfaces to refer to and to update the

members of the job object stored in the Perl process,

using RPCs.

• It is difficult to transfer functions among different lan-

guages using serialization or passing function point-

ers. However, since many Xcrypt functions such as

prepare use functions as arguments to be invoked as

callback functions, transferring functions using Xcrypt-

RPC should be supported for practicality. We there-

fore implemented a mechanism for transferring func-

tions among the languages. In this mechanism, when

the function f defined in language L is passed to lan-

guage L′, f is translated into function f ′ of language

L′ that calls f as an RPC.

3.3.2 Extension Modules

As described in Section 2.2, extension modules of Xcrypt

are defined as extended classes in Perl. However, it is diffi-

cult to define a Perl class in non-Perl languages and inherit

the members of the superclasses among these languages. In

Xcrypt-RPC, we enable users to define and use extension

modules in non-Perl languages through the following mech-

anism. Inside a non-Perl language, only method bodies of

an extension module are implemented; a stub module, writ-

ten in Perl, is generated from the definition of the extension

module written in a non-Perl language; and a class tree con-

struction and mechanism for calling a method of an ancestor

module are achieved using stub modules.

For example, defining a module in Ruby and using it from

a user script can be achieved as follows. A stub module writ-

ten in Perl is generated from the definition of the extension

module written by a Ruby developer. The generated stub

module file includes a definition of the Perl class and defini-

tions of the methods whose names correspond to the names

of the methods defined in the Ruby module file. The meth-

ods in the stub module are called stub methods. When a stub

method is invoked, it simply calls the corresponding Ruby

method using an RPC. To use the module from a user script,

the script does not load the Ruby module file directly, but

requests the Xcrypt process (Perl process) to load the stub

module file. A method in the Ruby module can be called

using the corresponding stub method in the stub module (if

the user script is written in a non-Perl language, the stub

method is called using an RPC).

Since the tasks of all the stub methods are the same, we

can generate a stub module file easily from only the list of

names of the public methods, the name of the generating

stub module, and the name of the Ruby module. Instead of

implementing a parser to extract the method names from a

script, we let the end users write a list of method names ex-

plicitly, as the second line in Fig. 5, to simplify the interface

implementations for additional supported languages.

In addition, we should support calling an ancestor from

a method defined in Ruby. Xcrypt-RPC achieves this by

requesting the stub method that calls the Ruby method to

search for and call the ancestor method.

The main advantage of our implementation strategy for

using the extension modules among different languages is

that, since a user script can call a module method in any

supported language through the corresponding stub method

defined in Perl, each language process has to support RPCs

only for Perl.

3.3.3 Support for Multithreading Environments

To handle RPC request messages, each process of a sup-

ported language has a message handler thread. As described

in Section 2.1.3, the submit function generates asynchronous

threads to submit jobs (job threads). In such environments,

another RPC request may occur during an RPC execution.

Therefore, if we implement the message handler to execute

a function when it receives an RPC request and waits for

another request after the execution, a deadlock may occur

since the handler cannot handle an RPC request while exe-

cuting a function for a different RPC request. Therefore, in

Xcrypt-RPC, the message handler generates a thread to ex-

ecute a function, and sends a reply message with its return

value when it receives an RPC request. The message han-

dler can handle another RPC request just after generating

the thread.

c⃝ 1992 Information Processing Society of Japan 6



Journal of Information Processing Vol.0 No.0 1–16 (??? 1992)

Although Xcrypt-RPC allows for calling a function that

generates asynchronous threads, such as the submit func-

tion, its protocol is designed to support only synchronous

RPCs. We did not support asynchronous RPCs because we

seldom need asynchronous processing in the original Xcrypt

except in the submit function, and we believe that the

demand for calling any function asynchronously would be

small. If necessary, we can easily extend Xcrypt-RPC to

support asynchronous RPCs.

3.3.4 Namespace

One of the common problems we should solve in develop-

ing a multilingual programming environment is a namespace

problem. That is, we need to decide what name is used to

specify a method in an Xcrypt module defined in a non-

Perl language. In multilingualized Xcrypt, we can specify a

method, regardless of the language in which the method is

defined, using a pairing of a public function name and the

name of the extension module in which the method is de-

fined. When the module is defined in a non-Perl language,

the public function name and the extension module name

directly correspond to the function name and the package

name (class name) in the stub module in Perl, respectively.

The mapping between the pair and function name in the

non-Perl language can be defined by the developer. The de-

veloper also can specify which functions to be published as

module methods that can be called using the RPCs.

Note that, for programmer convenience, standard Xcrypt

API functions such as prepare and submit can be specified

only by their function names. This specification is imple-

mented by defining wrappers in each supported language.

4. User Interface

This section shows the external specification that end

users or developers of extension modules refer to when they

use Xcrypt in supported languages for which interfaces have

been implemented using our multilingualization mechanism.

Although we use Ruby as a supported language to explain

the specification herein, the specifications of the interfaces

for other supported languages are given in the same manner,

unless explicitly stated otherwise.

4.1 Writing User Scripts in Ruby

This section shows the external specification for writing

Ruby-based Xcrypt scripts.

4.1.1 Declaration of Used Modules and Running

a Perl Process

A declaration of the modules to be included should ap-

pear at the beginning of the script, in the same manner as

in Perl.

xcrypt_init(module-name1,module-name2,. . . ,"core")

As in Perl scripts, the core package must be included in

the module list. Note that we can specify a module only

by its module name in module-name1, module-name2, . . .

regardless of the language in which the module is defined,

including Perl.

4.1.2 Creating Job Objects, Submitting Jobs,

and Waiting for Jobs to Finish

As in Perl scripts, we can generate job objects, submit

jobs, and wait for the submitted jobs to finish using the fol-

lowing function calls:

jobs = prepare(template)

submit(jobs)

sync(jobs)

We can translate Perl statements for these tasks into Ruby

statements in a straightforward manner. For example, pro-

cedures defined as values of the before and after members,

which are invoked through callbacks from the job threads

generated by the prepare function during a Perl process,

can be defined as general Ruby functions. However, since

these tasks are invoked using RPCs, users need to note the

data transfers, as explained in Section 4.2.

4.1.3 Calling Perl Functions

We can call any function defined in a Perl process using

a function call as follows:

xcrypt_call(fname,*args)

In addition, we can call public methods defined in the exten-

sion modules, such as the initialize method in the limit

module, using xcrypt_call. As explained in Section 3.3.4,

when specifying the module method, we do not need to be

concerned about the language in which the extension mod-

ule is defined; we can call a public method called method

defined in module M as follows:

xcrypt_call("M ::method",*args)

regardless of the language in which the method is defined.

4.2 Transferring Data among Languages

As discussed in Section 3.3.1, arguments and return values

in RPCs are transferred among languages using serializers.

The types of data we can transfer depend on the specifica-

tion of JSON, which we use as a serialized data represen-

tation; we can transfer null, booleans, numbers, strings,

arrays, and objects (represented as lists of key-value pairs).

In addition, we can transfer job objects and functions, which

cannot be serialized into JSON objects, as follows. Job ob-

jects are transferred to non-Perl languages as proxy objects.

For example, we can access members of a job object from

Ruby using the proxy object, as Fig. 7. When transferring

a function to another language as an argument or a return

value of an RPC, the function is translated into “a function

in the receiver language that calls the transferred function

in the sender language using an RPC.” Thus, in user scripts,

we can call a function that is defined in another language

and transferred to the process executing the script, as if it

is a native function.
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jobs = prepare(template);
j = jobs.first

j.get("id") # returns "psweep_20130101"
j.set("id", "psweep_20130101_rev")
j.get("id") # returns "psweep_20130101_rev"

Fig. 7 Handling a remote reference to a job object in Ruby.

4.3 Defining and Using Extension Modules

We can define extension modules in Ruby as follows:

( 1 ) Write a definition of the extension module in Ruby as

shown in Fig. 5. We can write definitions in Ruby in

almost the same manner as in Perl; we can define a

module by defining Ruby functions as new methods or

extensions to existing methods for extending the func-

tionalities of the job objects. In addition, we need to

explicitly enumerate a list of names of the public meth-

ods in the script. In Ruby, we can write the list as a

comment line as follows:

### export: method1 method2 . . .methodn

( 2 ) Generate a Perl stub module file (Section 3.3.2) from

the Ruby module definition file. The generator is pro-

vided in the implementation of the Xcrypt interface for

Ruby.

As described above, the defined module can be included

by writing its module name in xcrypt_init or use base,

regardless of the language in which the definition is writ-

ten. An public method defined in the included module can

be called using the xcrypt_call function as explained in

Section 4.1.3.

As described in Section 3.3.2, we can call a method de-

fined in an ancestor module from a body of the method

defined in a non-Perl language, using the mechanism pro-

vided by the NEXT Perl module. For example, we can ex-

ecute xcrypt_call_next(*args) in the body of a module

method in Ruby to search for a method based on the module

list written in xcrypt_init or use base and can call the

first method found, in the same manner as a NEXT call in

Perl (Section 2.2).

5. Specification and Implementation of

Xcrypt-RPC

In this section, we explain the details of the Xcrypt-RPC

specification and show our implementation of Xcrypt-RPC.

In Section 5.1, we provide an overview for how a user

script written in a non-Perl language and including modules

defined in non-Perl languages can be run. In Section 5.2, we

explain the messages used in Xcrypt-RPC. We then show

our implementation of Xcrypt-RPC in Perl in Section 5.3.

Finally, in Section 5.4, we explain how to implement Xcrypt-

RPC in a non-Perl language using Ruby as an example.

5.1 How a Script Runs with Xcrypt-RPC

Fig. 8 shows how the user script user-script.rb written

in Ruby runs using the extension modules P, R, and C, which

are implemented in Perl, Ruby, and Lisp, respectively.

P.pm, R.pm, L.pm, and core.pm in the upper-center of

Fig. 8 are the Perl module files. In particular, R.pm and

L.pm are the stub modules (Section 3.3.2) generated from

R.rb and L.lisp, respectively.

To execute the user script，we first run a Ruby process

(the leftmost process in Fig. 8). The Ruby process then calls

xcrypt_init at the beginning of the script body to run a

Xcrypt (Perl) process. The Perl process first loads the P.pm,

R.pm, L.pm, and core.pm modules. Next, xcrypt_init in

the Ruby process makes a connection to the process and

executes the rest of the user script.

A Lisp process is not run until the first call to a stub

method defined in the stub module L.pm. A module list

(L.lisp in this example) that the Lisp process needs to load

upon start-up is given by the Perl process as its runtime op-

tions.

As explained in Section 3.3.2, calling a method in an an-

cestor module from a body of the method defined in a non-

Perl language is achieved by requesting a stub method to

search for and call the ancestor method. For example, call-

ing an ancestor method from the method defined in R.rb is

achieved as follows:

• For the stub method in R.pm to call the method in R.rb

as an RPC, it generates an asynchronous thread, which

performs an RPC to the Ruby method. As an additional

implicit argument, the RPC message includes a callback

function to send a request to the main thread in Perl

(the thread that generated the asynchronous thread).

The main thread waits for a message for requesting an

ancestor method call or a message for notifying that the

execution of the RPC is completed.

• When xcrypt_call_next (Section 4.3) is invoked in the

body of the Ruby method, the Ruby process invokes the

callback function to send a request message to the main

thread in Perl. The main thread searches for and calls

an ancestor method, and then returns the value to the

Ruby process as the result of the callback.

The implementation code used in the stub methods for

executing these tasks is shown in Section 5.4.

5.2 Messages in Xcrypt-RPC

Messages in Xcrypt-RPC are classified into “funcall” mes-

sages, “return” messages, and “finish” messages, which are

used to send RPC requests, send the return values of the

RPCs, and close the connections between processes, respec-

tively.

Each message is a single line string that represents a sin-

gle JSON object. The types of data that a JSON object can

contain are restricted by the specification of JSON, and can

be listed as follows:

• true and false (boolean),

• numbers (integer and floating number),

• strings,

• arrays,

• objects (unordered sets of key-value pairs), and

• null.

In particular, to achieve the transfer of functions and

job objects among different languages as described in Sec-
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Fig. 8 How the user script written in Ruby runs using the extension modules implemented
in Perl, Ruby, and Lisp.

{
"exec": "funcall",
"function": "Limit::initialize",
"args": 5,
"thread_id": "#<Thread:0x8005acb4>",
"next": {

"type":"function/pl",
"id":"CODE(0x8027d3e8)"

}
}

Fig. 9 An example of an Xcrypt-RPC message.

tion 3.3.1, objects that match one of the following patterns

are treated as special objects.

• A function object:

{"type":"function/lang","id":"functionID"}
(Lang indicates the language in which the function is

defined, e.g., perl, ruby, or lisp).

• A job object:

{"type":"job obj", "id":"jobID"}
For serializing the structural data during a language pro-

cess, the data are traversed, replacing elements into JSON

objects. In particular, functions and job objects are replaced

with the special JSON objects described above. For deserial-

izing JSON objects into data during a language process, the

JSON objects are traversed, replacing elements into data in

the native format. In particular, JSON objects that match

the patterns described above are replaced with functions and

job objects (proxy objects in a non-Perl language).

Each type of messages used in Xcrypt-RPC can be ex-

plained as follows:

• A “funcall” message is sent to request an RPC. This

message is represented as a JSON object that contains

the following keys:

– exec: a string "funcall";

– thread_id: a string used to identify the thread

(unique inside a process) that sent this “funcall” mes-

sage;

– function: a string or special JSON object used to

specify the calling function;

– args: an array of arbitrary length that contains argu-

ments of the calling function; and

– next (used only when this message is sent from a stub

method used in a Perl process): a callback function

(a special JSON object) for requesting the process to

invoke an ancestor method (see Section 5).

After a thread sents a “funcall” message, it waits until

receiving a “return” message whose thread_id value is

the same as that of thread_id of the “funcall” mes-

sage. When a process receives a “funcall” message, it

calls the function corresponding to the function value

of the message. After the execution of the function fin-

ished, it sends back a “return” message with the return

value.

• A “return” message is sent to notify a completion of an

RPC, which is requested by a “funcall” message, and

return its result value. This message is represented as

a JSON object that contains the following keys:

– exec: a string "return";

– thread_id: a string that is contained in the corre-
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sponding “funcall” message; and

– message: an array of arbitrary length that contains

the return values of the RPC.

• A “finish” message is sent to close a connection be-

tween processes. When a process receives this message,

it closes the connection to the sender and terminates the

process. A “finish” message is represented as a JSON

object that contains the following keys:

– exec: a string "finish"; and

– message: a string used to indicate the exit status.

Fig. 9 shows an example of a “funcall” message.

5.3 Implementation of Xcrypt-RPC for Perl

5.3.1 Message Handler

When a Perl process is run as an Xcrypt process, the pro-

cess first loads the libraries for the Xcrypt functionalities and

extension modules of Xcrypt. It then generates a thread for

handling Xcrypt-RPC messages. Each time this thread re-

ceives a message, it deserializes the message and performs

one of the following tasks according to the message type (the

value of the exec key). For a “funcall” message, the message

handler generates an asynchronous thread. This thread calls

a function specified by the function value using arguments

specified by the args values. After the execution of the

function is finished, this thread sends a “return” message to

the sender of the ”funcall” message. The “return” message

includes the return values of the function as its message

values. The thread_id value of the “return” message is

the same as the thread_id value in the received “funcall”

message. For a “return” message, the message handler noti-

fies the thread corresponding to the thread_id value in the

message that the RPC is completed and sends the message

values as results of the RPC. For a “finish” message, the

message handler closes a connection and terminates the Perl

process.

The reason for the message handler thread to generate a

thread for a “funcall” message is described in Section 3.3.3.

5.3.2 Implementation of RPC Functions

When xcrypt_call(lang, function, args) is executed

during a Perl process, it sends a “funcall” message to the

process corresponding to lang. The thread_id value in the

“funcall” message is a unique string used to identify the

thread that executed the function call. After sending this

message, this thread waits for a “return” message that con-

tains this string as the thread_id value. The return values

of xcrypt_call are the message values in the “return” mes-

sage.

The args values are serialized by employing an existing

JSON library for Perl. While traversing the values, the func-

tions and job objects are replaced with special JSON objects

as explained in Section 5.2. When replacing a function into

a special JSON object, the serializer adds a pairing of a gen-

erated function ID and a reference to the function into the

global function table. Referring to this table, we can specify

a function from a special JSON object. Although we need

the same mechanism for job objects, too, we do not have to

prepare a new table because the original Xcrypt implemen-

tation manages all the generated job objects using such a

global table.

When the deserializer receives a special JSON object for

a function or job object, it deserializes it as follows.

• If the special object represents a function, the following

cases may apply:

– if lang in the object is perl, the deserializer refers to

the global function table and replaces the object with a

reference to the function that corresponds to the func-

tionID value in the object.

– if lang in the object is not perl, the deserializer gen-

erates an unnamed function that performs an RPC to

call the function specified by the object, and replaces

the object with a reference to the unnamed function.

• If the special object represents a job object, the dese-

rializer refers to the job table and replaces the object

with a reference to the job object that corresponds to

the jobID value in the special object.

A Perl process runs a process of another language when

xcrypt_call calls a function in that language for the first

time. When the Perl process runs a language process, it

sends a list of modules that the new process should load,

that is, a list of modules required by the user script and

implemented in that language.

5.4 Implementation of a Ruby Interface

5.4.1 Startup Processes

When a Ruby process is run, it first loads extension mod-

ules defined in Ruby, and then generates a thread for han-

dling messages from a Perl process. We can implement the

message handling in the same manner as in Perl.

5.4.2 Implementation of RPC Functions

When xcrypt_init(module-list) is called during the

Ruby process, it runs an Xcrypt (Perl) process and makes

a connection to it. When the Ruby process runs an Xcrypt

process, it sends module-list to Xcrypt, and lets Xcrypt

know that it is being run by the Ruby process because

Xcrypt should know that a Ruby process is already running.

The implementation of xcrypt_call(function, args) is

almost the same as in the Perl version except that lang is

not necessary because a Ruby process directly communicates

only with an Xcrypt process.

5.4.3 Generation of Stub Modules

As described in Sections 3.3.2 and 4.3, the definition of

an extension module in Ruby includes the definition of the

module name and implementations of the module methods,

and we need to generate the definition of a stub module

from the module definition in Ruby. The developer of the

Xcrypt interface for Ruby has to implement the stub module

generator.

The stub generator takes a module name in Ruby and a

stub module name as runtime arguments and extracts a list

of names of the public methods from “### export: ...” in

a Ruby module file. It then generates a stub module file, as

shown in Fig. 10, which is generated from the Ruby-based
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definition of the Limit module shown in Fig. 5.

In Fig. 10, we omit the method bodies except for the start

stub method. However, the bodies of the other methods are

the same as start except for the method name that appears

in Limit::start and $self->NEXT::start(@next_args).

As described in Section 5.1, a stub method first generates a

thread for performing an RPC to the corresponding method

in Ruby ($remote_thr). The main thread then waits for

a message requesting an ancestor method call or a message

notifying that the execution of the RPC has been completed.

The generated thread sends an RPC request by calling the

xcrypt_call_with_next function, which is implemented as

an extended version of xcrypt_call. As in xcrypt_call,

xcrypt_call_with_next takes a language name as the first

argument, a function name as the third argument, and ar-

gument values of the calling function as the remaining argu-

ments. In addition, xcrypt_call_with_next takes a call-

back function for sending a message to the main thread in a

stub method as the second argument. This callback function

is set to next in the “funcall” message, and is called when

xcrypt_call_next is called in the body of the Ruby method

for requesting a calling of an ancestor method. When the

main thread in the Perl process receives a next_call mes-

sage through a callback function, it searches for and invokes

an ancestor method using a NEXT call. The return value

of the ancestor method is sent to the Ruby process as the

return value of the callback function.

6. Performance Evaluations

We executed two kinds of performance measurements to

evaluate the performance impact of our RPC mechanism. In

Section 6.1, we measure the overhead of the RPCs by em-

ploying a script where the overhead of the job submissions

and scheduling overhead by a batch scheduler are removed.

In Section 6.2, we then evaluate the impact of the RPC over-

head during a practical use by employing a practical script

that conducts actual job submissions.

6.1 RPC Overheads

To measure the overhead of the RPCs, we applied a dry

execution module to a user script that executes n jobs in

parallel and waits for all the jobs to finish. Here, the dry

execution module is an extension module used to change the

behavior of the submit function to skip the job submission

and wait for the completion of the jobs. Although this mod-

ule is often used for debugging a script, we use this module

to remove the impact of the job execution time, overhead of

the job submissions, and scheduling overhead by the batch

scheduler.

We implemented user scripts and the dry execution mod-

ule in both Perl and Ruby, and measured the execution time

of the following four scripts.

• Perl-Perl: a Perl-based user script that uses a Perl-

based definition for the dry execution module.

• Perl-Ruby: a Perl-based user script that uses a Ruby-

based definition for the dry execution module.

package Limit_rb;

# A stub method
sub start {

my ($self, @args) = @_;
my $sig=new Coro::Signal;
my $msg=’’;
my @next_args, $next_ret;

# Generates an asynchronous thread for performing an RPC.
my $remote_thr = Coro::async {
my $remote_ret = user::xcrypt_call_with_next(

’ruby’,
sub { # This function is set to next in a ‘‘funcall’’

# message.
@next_args = @_;
$msg=’next_call’; $sig->broadcast();
until ($msg eq ’next_ret’) {

$sig->wait;
}
return $next_ret;

},
’Limit::start’, $self, @args);

$msg=’remote_ret’; $sig->broadcast();
return $remote_ret;

};

# The main thread waits for a message and calls NEXT::start
# when it receives a ’next_call’ message.
until ($msg eq ’remote_ret’) {
$sig->wait();
if ($msg eq ’next_call’) {

$next_ret = $self->NEXT::start(@next_args);
$msg=’next_ret’; $sig->broadcast();

}
}
return $remote_thr->join();

}

# The following stub methods also can be generated
# in the same manner as start .
sub initialize { ... }
sub initially { ... }
sub finally { ... }

Fig. 10 The Limit stub module in Perl

• Ruby-Perl: a Ruby-based user script that uses a Perl-

based definition for the dry execution module.

• Ruby-Ruby: a Ruby-based user script that uses a Ruby-

based definition for the dry execution module.

The user script and definition of the modules used for

dry executions in Perl are shown in Appendixes A.1.1 and

A.1.2，respectively. The user script and definition of the

modules used for dry executions in Ruby are shown in Ap-

pendixes A.1.3 and A.1.4, respectively.

During the executions of scripts other than the Perl-Perl

script, the RPCs are used as follows:

• an RPC for the prepare_submit_sync function in the

Ruby-Perl and Ruby-Ruby scripts, and

• the following two RPCs for each job in the Perl-Ruby

and Ruby-Ruby scripts:

– an RPC for the Dry::start method, and

– an RPC from the Dry::startmethod for updating the

value of the signal member of the job object through

its remote reference.

Thus, there are 2n RPCs in the Perl-Ruby script, 1 in the

Ruby-Perl script, and 2n+ 1 in the Ruby-Ruby script.

The evaluation environment is as follows:

• CPU: Intel Core i7-640LM 2.13 GHz

• Memory: 2GB of PC3-8500 DDR3 SDRAM

• OS: Linux 3.5.3-1 (x86-64)

• Perl: perl 5.10.1
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Fig. 11 Execution times of the dry-run scripts.

Fig. 12 Relative execution times to the Perl-Perl script per job.

• Ruby: ruby 1.9.3dev

We changed the number of jobs (n) to 0, 100, 200, 300,

400, and 500 and took the average lengths of the execution

time of ten trials for each setting. The measurement results

are shown in Fig. 11. We can see that the execution time

increases proportionally according to the number of jobs.

Fig. 12 shows the relative execution times of the Perl-

Ruby, Ruby-Perl, and Ruby-Ruby scripts to the Perl-Perl

script per job. From this figure, we can see that the overhead

of the RPCs per job is at most 80ms. Such overhead can be

ignored because a job executed on supercomputer systems

usually takes from minutes to days, and the scheduling over-

head for each job is usually longer than a second.

6.2 Evaluation of a Practical Application

To evaluate the impact of the RPC overhead measured

in the previous section for a practical use, we evaluated the

performance when employing Xcrypt scripts for automatic

performance tuning when actually submitting jobs.

Automatic performance tuning is one of the most signifi-

cant applications of Xcrypt. Actually, we performed a per-

formance tuning for an electromagnetic field analysis pro-

gram using the Perl version of Xcrypt. The target analy-

sis program employs a well-known optimization technique

called tiling. The program using this technique takes four

performance parameters, the tile size (x, y, z) and the num-

ber of tiling steps. The tuning space is too large to try all

combinations through a parameter sweep. We therefore em-

ployed parameter sweeps by limiting the search space step

by step using the heuristics. As a result, we obtained a 25%

better performance than hand-tuning [14].

Appendix A.1.5 shows a Ruby-based Xcrypt script equiv-

alent to the Perl-based Xcrypt script we used in the perfor-

mance tuning in [14]. Furthermore, this Ruby-based script

uses the limit module implemented in Lisp (Fig. 6) to limit

the number of simultaneously running jobs.

We compared the execution time of the Ruby-based script

(which we call the Ruby-Lisp script) and the Perl script used

in [14]. Since it takes too long to execute these scripts un-

der the same conditions described in [14], we used a smaller

problem size for the electromagnetic field analysis program,

allowing each program execution to take about ten minutes,

and limited the number of jobs to 59. We first submit 29

jobs and wait them to finish; we then submit another 30 jobs

and wait for these jobs to also finish.

We used the Laurel supercomputer system at ACCMS,

Kyoto University. This system is a Xeon E5 Sandy Bridge

cluster, and employs the LSF batch scheduler [4]. We occu-

pied a job queue where we can execute at least eight jobs

at the same time*2. The versions of the language imple-

mentations we used for the performance evaluations can be

summarized as follows:

• Ruby: ruby 1.9.3p194

• Perl: perl v5.12.5

• Lisp: Allegro Common Lisp 8.1

We executed the Perl and Ruby-Lisp scripts six times

each. The results of the performance evaluations are shown

in Table 2. The lengths of the execution times varied

widely among the executions because of the variability of

the scheduling overhead, or the lengths of the waiting time

before the batch scheduler assigns jobs for execution.

A comparison of the average lengths of the execution times

shows that the additional time of the Ruby-Lisp script to the

Perl script is 66 ms per job. When we compare the mini-

mum lengths of the execution times to minimize the impact

of the scheduling overhead, the execution time of the Ruby-

Lisp script is 5.2 s longer than the Perl version, and the

overhead per job is 88 ms. This is shorter than 1% of the

average job execution time, and we can conclude that the

overhead of the RPCs is ignorable relative to the length of

the job execution time.

7. Related Work

7.1 RPCs and Remote Object References among

Different Languages

This section presents existing research and products for

achieving calling methods among different languages. We

employed JSON [9] as a representation of serialized ob-

*2 Note that we do not submit more than eight jobs at the same
time since we limit the number of simultaneously running jobs
using the limit module. When we submit more than eight
jobs simultaneously in the evaluation environment, the judg-
ment of runability of the ninth and the following jobs competes
with jobs of other uses in the supercomputer. We limited the
number of simultaneously running jobs to remove such distur-
bances.
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Table 2 Execution times of the scripts used for auto-tuning.

Perl [s] Ruby-Lisp [s]

617.4 601.4
731.4 858.1
435.2 522.0
455.8 440.4
500.9 478.0
707.5 571.5

Average 574.7 578.6

jects because it is highly readable, and we can easily im-

plement RPC mechanisms for adding supported languages

without describing type information in the Interface De-

scription Language (IDL). In addition, we designed Xcrypt-

RPC, which supports remote references to functions and job

objects, which are not supported by JSON-RPC [15].

7.1.1 XDR/ONCRPC (SunRPC)

The External Data Representation (XDR) [16] is a data

serialization format developed by Sun Microsystems, which

allows data to be transferred among different operating sys-

tems.

ONCRPC (Open Network Computing Remote Procedure

Call), developed by Sun Microsystems as part of their Net-

work File System (NFS), is an RPC system that uses XDR

in a data serialization format and allows communication

among different operating systems. In ONCRPC, we de-

scribe RPC interfaces, as well as the values and structures

to be transferred. Since the RPC interface does not include

type information, each node has to share the type informa-

tion described in the IDL before starting a communication.

7.1.2 DCE/RPC

Distributed Computing Environment / Remote Procedure

Calls (DCE/RPC) [17] is an RPC system that enables us to

efficiently develop software for large-scale distributed sys-

tems. The RPC protocol used in this system to achieve high

level functionality, such as showing a distributed system as

if it was a single node, is rather complicated.

7.1.3 SOAP, XML-RPC

The Simple Object Access Protocol (SOAP) [18] is an

XML-based protocol that allows network communication.

The message format in SOAP is similar to a header and

a body in HTTP; the header contains information neces-

sary for communication, such as session information, and

the body contains the main data. This protocol has the ad-

vantage of extensibility. However, the messages tend to be

verbose. This protocol therefore does not fit our research

since we mainly use communication among the processes in

a single host.

XML-RPC is a simpler RPC protocol upon which SOAP

is based. It employs XML for encoding and HTTP as a

data transfer mechanism. We can use XML-RPC, but chose

JSON because of the readability of the encoded data.

7.1.4 JSON-RPC

JSON-RPC [15] is an RPC protocol that transfers data

using HTTP or TCP/IP. As with Xcyrpt-RPC, it employs

JSON as a serialized data representation.

Fig. 13 shows an example of messages in JSON-RPC. An

Request
{

"jsonrpc": "2.0", // JSON-RPC version 2.0
"method": "subtract",
"params": [42, 23],
"id": 1

}

Response
{

"jsonrpc": "2.0",
"result": 19,
"id": 1

}

Fig. 13 Messages in JSON-RPC.

{ "compact" => true } #=> "\x81\xA7compact\xC3"

[1,2,3] #=> "\x93\x01\x02\x03"

Fig. 14 Messages in MessagePack.

RPC request is represented as an object that contains the

members jsonrpc, method, params and id. A reply message

for an RPC request is represented as an object that contains

the members jsonrpc, result (when the RPC is success-

ful), error (when the RPC fails), and id. We can pack

multiple RPC requests into an array, and send the array for

a batch process. In such a case, a reply message is also an

array in which multiple reply messages are packed. JSON-

RPC also supports multithreaded environments．However,

it does not support transferring functions or remote refer-

ences to objects.

7.1.5 MessagePack-RPC

MessagePack [19] is a data representation format that sup-

ports the same data types as JSON (it also supports binary

data not supported in JSON). Since data are represented

in binary format, as shown in Fig. 14, the message size is

smaller, and we can transfer data more efficiently. An RPC

system employing MessagePack (MessagePack-RPC), which

many languages support, was developed [20].

We expect to achieve a better efficiency using Mes-

sagePack, but chose JSON because we mainly use com-

munication inside a single host, and for our purpose, the

readability of the encoded data is more important than the

communication performance.

7.1.6 CORBA

The Common Object Request Broker Architecture

(CORBA) [21] is a technique that allows the mutual ex-

ploitation of distributed objects among different operating

systems and different languages. To serialize the objects,

we need to describe the external interfaces of objects in the

IDL.

CORBA is used for implementing a system enabling us

to use Java RMI (remote method invocation) [22], API for

sharing objects, and remote procedure calls among Java Vir-

tual Machines, in non-Java languages [23].

7.1.7 Other RPC Implementations

In large-scale mission-critical systems that need to handle

large amounts of messages, the performance of a serializer

and small amounts of encoded data are more important.

There has been a considerable amount of research on sat-

isfying such requirements, and many products have been
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developed, some of which support RPCs among different

languages. Such products include Protocol Buffers devel-

oped by Google [24]; Avro, developed in a subproject of the

Hadoop project [25]; Thrift, originally developed by Face-

book and later as an Apache project [26]; and MessagePack-

RPC. In these systems, with the exception of MessagePack-

RPC, we need to define the schemas in IDL for transferring

data.

To achieve multilingualization for Xcrypt, we mainly use

communication inside a single host, and the serialization

and communication performance is less important. JSON is

therefore desirable from the viewpoints of readability, flex-

ibility, and the fact that it is already supported in many

script languages.

7.2 Process Containing Interpreters of Multiple

Languages

The “Perl for Ruby Module” [13] is a Ruby module that

enables us to call Perl functions from a Ruby script. This

is achieved by creating an execution file by linking Perl and

Ruby interpreters.

This system supports remote references to Perl objects

using proxy objects, and calling Ruby functions from Perl

using callback functions. However, unlike Xcrypt-RPC, the

method used for calling a callback function from Perl differs

from that of a Perl function.

While this strategy has a performance advantage, it does

not fit our purpose because the maintenance costs of such a

system are high since we have to follow version upgrades of

all the interpreters. Furthermore, the costs explode as the

number of supported languages increases.

7.3 Additional Strategies for Multilingualization

We often re-implement an existing functionality in other

languages to enable us to use their functionality. For exam-

ple, Catalyst [27] and Django [28] are re-implementations

of Ruby on Rails [29] in Perl and Python, respectively. Al-

though this strategy has the advantages of performance and

usability, it has high implementation and maintenance costs.

On the other hand, we can implement a functionality as

a dynamic-link library, and link an interpreter of the target

language with this library. For example, using this strategy,

cl-mpi [30] and the Ocaml/MPI Interface [31] allow us to

use MPI in Common Lisp and Ocaml, respectively.

Note that neither strategy fits our purpose because we

cannot achieve the use of extension modules among differ-

ent languages.

8. Conclusion and Future Work

In this research, we developed a multilingualization mech-

anism for Xcrypt based on RPCs, which enables end users

to use the functionalities of Xcrypt, such as job management

and job submissions, in many languages. To achieve this, we

also developed an RPC protocol that supports the transfer-

ring of functions and remote references to job objects, and

a mechanism that allows us to use extension modules in any

supported language from scripts in any supported language.

Using our system, an end user who is unfamiliar with Perl

can use the functionalities of Xcrypt naturally without have

to learn Perl. We can also develop a script using the typical

features of various languages. In addition, we show that the

performance impact from the RPCs is ignorable in practical

use.

Currently, the supported languages besides Perl include

only Ruby and Common Lisp. However, we can add new

supported languages easily referring to these existing im-

plementations, which will be included in future work. In

addition, Xcrypt has a feature that lets computing nodes

execute part of the user scripts during a job execution. This

is difficult to implement because we need to serialize bodies

of the function definitions. However, we implemented them

in Perl using a byte decompiler included as a standard Perl

library, and in Lisp by letting the programmers quote the

function definition. We will implement this feature for other

languages including Ruby.
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Appendix

A.1 Scripts for Performance Evaluations

A.1.1 Perl-based User Script for Dry Executions
use base qw(dry core);
use Time::HiRes;

my $n = 100;
print "($n jobs)\n";

my $start = Time::HiRes::time;
my %template = (

’id’ => ’job_dry_perl’,
’RANGE0’ => [1..$n], # generates n jobs
’exe0’ => ’dummy’,

);
prepare_submit_sync(%template);
printf("%0.6f\n", Time::HiRes::time - $start);

A.1.2 Perl-based Definition of the dry Module
package dry;
use core;

sub start {
my $self = shift;
$self->{signal} = ’sig_invalidate’;

}

1;

A.1.3 Ruby-based User Script for Dry Executions
require_relative "client.rb"

require_relative "lib/dry-rb.rb"
# loads the module for dry executions
xcrypt_init "DryRb", "core"

n = 100
STDOUT.puts "(#njobs)"
start = Time.now
template =

’id’ => ’job_dry_ruby’,
’exe0’ => ’dummy’,
’RANGE0’ => [*(1..n)] # generates n jobs

prepare_submit_sync(template)
STDOUT.puts(Time.now - start)

A.1.4 Ruby-based Definition of the dry Module
### export: start # list of public methods
require_relative ’./xcrypt_lib.rb’
include XcryptLib

module DryRb
def self.start(job)
# Force the job completed using a remote reference to
# the job object.
job.set("signal", "sig_invalidate")

end
end

A.1.5 Ruby-based User Script for Auto-Tuning
require "client.rb"
xcrypt_init "limit_lsp","core"

$result = [] # The list to store evaluation result
@jobid = 0

# Problem size
DOM_X = DOM_Y = DOM_Z = 300; N_STEP = 90

# Number of threads
N_THREAD = 8

# Cache size per CPU socket [KB]
CACHE_SIZE = 22784

# Cache size per node [KB]
CACHE_NODE = 2 * CACHE_SIZE

# Maximum number of grid points stored in cache
GRID_MAX = CACHE_NODE * 1000 / 52

OUTPUT_DIR = "result_\
#{Time.now.strftime(’%Y-%m-%d_%H:%M:%S’)}"

Dir.mkdir(OUTPUT_DIR) unless File.exists?(OUTPUT_DIR)

def submit_fdtd(tile_x, tile_y, tile_z, tile_step)
output = File.join(OUTPUT_DIR, "result_%d_%d_%d_%d_%d" \

% [DOM_X,tile_x,tile_y,tile_z,tile_step])
template = {

’id’ => "jobfdtd_rb#{@jobid+=1}",
’exe0’ => "export OMP_NUM_THREADS=#{N_THREAD}",
’exe1’ =>

"mpiexec.hydra ./fdtd_tiling.out %d %d %d %d \
%d %d %d %d > #{output}" \

% [DOM_X, DOM_Y, DOM_Z, N_STEP,
tile_x, tile_y, tile_z, tile_step],

’JS_cpu’ => N_THREAD,
’JS_node’ => 1,
’JS_limit_time’ => ’1:00’,
’after’ => lambda {|this|

$result << [
get_elapsed_time(output),
tile_x, tile_y, tile_z, tile_step]

}
}
prepare_submit(template)

end

def get_elapsed_time(file)
...

end

# product_if: Make a product set from *sets and then remove
# elements from it using the predicate defined as &block.
def product_if(*sets, &block)

...
end

time_start = Time.now
xcrypt_call("limit_lsp::initialize", N_THREAD)

# --------------------------------
# Step 1 : determine OPTIMAL_CUBE_SIZE
# --------------------------------
puts "step 1"
N_THREAD.step(DOM_X, 10) {|x| submit_fdtd(x, x, x, 10) }

sync

fastest_params = $result.min_by{|e|e.first}
OPTIMAL_CUBE_SIZE = fastest_params[1]

# --------------------------------
# Step 2 : determine OPTIMAL_TILE_STEP
# --------------------------------
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puts "step 2"
$result = []

1.upto(30).each do |s|
submit_fdtd(OPTIMAL_CUBE_SIZE,

OPTIMAL_CUBE_SIZE,
OPTIMAL_CUBE_SIZE, s)

end

sync

fastest_params = $result.min_by{|e| e.first}
OPTIMAL_TILE_STEP = fastest_params.last

# --------------------------------
# Step 3: determin optimal tile size
# --------------------------------
puts "step 3"
$result = []
step_y = (OPTIMAL_CUBE_SIZE/20 + 0.5).floor
param_tx = N_THREAD.step(DOM_X, 16)
param_ty = N_THREAD.step(OPTIMAL_CUBE_SIZE, step_y)
param_tz = N_THREAD.step(350, 9)

test_sets = product_if(
param_tx, param_ty, param_tz) {|tx,ty,tz|
(OPTIMAL_CUBE_SIZE**3 - GRID_MAX * 0.05) <= tx*ty*tz \

and tx*ty*tz <= (OPTIMAL_CUBE_SIZE**3 + GRID_MAX * 0.35)\
? true : false

}

test_sets.each do |tx,ty,tz|
submit_fdtd(tx,ty,tz, OPTIMAL_TILE_STEP)

end

sync

fastest_params = $result.min_by{|e| e.first}

puts "**RESULT**\n tx: %f, ty: %f, tz: %f, ts: %f" \
% fastest_params[1..4]

puts "elapsed time: #{Time.now - time_start} s"
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