
Xcrypt: A Perl Extension for Job Level Parallel
Programming

Tasuku Hiraishi
Academic Center for

Computing and Media Studies,
Kyoto University

Sakyo Kyoto, JAPAN 606-8501
tasuku@media.kyoto-

u.ac.jp

Tatsuya Abe
RIKEN Advanced Institute for

Computational Science
Kobe, JAPAN 650-0047

abet@riken.jp

Takeshi Iwashita
Academic Center for

Computing and Media Studies,
Kyoto University

Sakyo Kyoto, JAPAN 606-8501
iwashita@media.kyoto-

u.ac.jp
Hiroshi Nakashima
Academic Center for

Computing and Media Studies,
Kyoto University

Sakyo Kyoto, JAPAN 606-8501
h.nakashima@media.kyoto-

u.ac.jp

ABSTRACT
For the effective use of resources in large-scale parallel com-
puting environments such as supercomputers, we often use
job level parallelization, that is, plenty of sequential/parallel
runs of a single program with different parameters. For
describing such parallel processing easily, we developed a
scripting system named Xcrypt, based on Perl. Using Xcrypt,
even computational scientists who are not familiar with script
languages can perform typical job level parallel computa-
tions such as parameter sweeps by using a simple declarative
description. In addition, programmers who are familiar with
Perl can write a wide variety of execution flows such as op-
timal parameter search. Xcrypt provides Perl libraries that
enable us to write job executions simply as function calls,
relieving us from annoying tasks such as creating job scripts
for batch schedulers and managing states of jobs. Further-
more, Xcrypt provides a mechanism to add hooks invoked
before/after jobs are submitted/finished modularly. This
enables us to add various features such as search algorithms
as modules. In this paper, features of Xcrypt, our imple-
mentation of Xcrypt, and practical examples of parallel job
executions performed by using it are discussed.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks, Modules, packages

General Terms
Languages, Design

1. INTRODUCTION
We need to parallelize computations to use large-scale com-
puting resources effectively. Parallelization is done not only
at the program level by using OpenMP and/or MPI but also
at the job level by running a single program with different
parameters in parallel.

Parameter sweeps and optimal parameter searches for car
body design, drug discovery, and static software automatic
tuning [10] are real examples of job level parallel process-
ing. For achieving coarse-grained parallelism, job level par-
allelization can be used since it is easy to implement. Fur-
thermore, computing systems with a parallelism greater than
1M are emerging; in such systems, it is difficult to write a
parallel program that runs efficiently. However, we can use
such systems effectively by using two layers of parallelism at
both the program level and job level.

In a system where a batch scheduler such as NQS [4], LSF [3],
SGE [11], or Torque [2] is installed, we can impose comput-
ing resource assignment on the back-end scheduler. There-
fore, we can just pre-existing script languages, e.g., Perl,
Ruby, Python or shell scripts, to automate job level parallel
executions. However, there remain many tasks that are hard
to implement using these languages, such as preparing input
files, generating a job script for each job, submitting jobs
and waiting for them to be finished, extracting necessary
parts from output files to analyze results, and handling for
jobs that are abnormally finished. Furthermore, interfaces
to batch schedulers, e.g., a shell command for submitting
jobs and a grammar for job scripts, differ with the system
used. These issues are especially serious for computational
scientists who are not familiar with script languages.

Although we can use GUI-based workflow tools such as that

presented in [7], most of them lack flexibility. For example,
it is hard to implement optimal parameter search using the
bisection algorithm with such tools.

Therefore, we have developed a scripting system named Xcrypt
(pronounced“iks-krài-pt”), based on Perl. This system pro-
vides various additional supports that facilitate the easy de-
scription of job level parallel processing.

In Xcrypt, a job is abstracted as a job object and we can write
a job submission simply as an asynchronous procedure call
with the job objects given as arguments. This enables us
to seamlessly glue job executions that are components of a
parallel processing job. In addition, Xcrypt has a mechanism
to add various useful features, such as limiting the number
of simultaneously running (or queued) jobs, as modules.

The advantages of Xcrypt are as follows.

• Ease of use and Flexibility

– We can perform typical job level parallel com-
putations such as parameter sweeps by using a
simple declarative description.

– In addition, programmers who are familiar with
Perl can write a wide variety of execution flows.
This is easier than writing them by using Perl
or other pre-existing script languages since pro-
cedures involving job submission and waiting for
job completion can be specified by using proce-
dure calls without having to consider interfaces
to batch schedulers.

• Portability

– Once a user writes an Xcrypt script, it runs on
various systems without requiring modifications.
Note that generally, different batch schedulers are
installed in different systems. Differences in inter-
faces among systems are handled by configuration
scripts, which are written separately from Xcrypt
scripts. These scripts need to be prepared for each
system when installing Xcrypt. It is expected to
be done by the system administrators.

– We make no assumption regarding application pro-
grams. In contrast, MegaScript [12, 8], a Ruby-
based job level parallel script language, assumes
that applications receive inputs from the standard
input and send outputs to the standard output.
We only assume that the underlying batch sched-
uler provides the commands for submitting a job,
canceling a job, and displaying the status of sub-
mitted jobs.

• Extensibility

– We can extend Xcrypt by implementing extension
modules. A module is defined as an ordinary Perl
library or an extension of the base class for job
objects. We can extend the base class by adding
not only methods and members through object-
oriented Perl programming but also preprocess-
ings and postprocessings that are performed be-
fore and after job execution, respectively.

• Fault resilience

– Even if submitted jobs or an Xcrypt process is
aborted, we can, to a certain extent, restore the
original state quickly by executing the same Xcrypt
script again. This is possible since Xcrypt saves
the state transition log of the jobs, and when
Xcrypt is re-executed, it skips the previously exe-
cuted tasks and executes the aborted jobs again.

2. XCRYPT FEATURES
This section explains the important features of Xcrypt added
to Perl.

2.1 Declaration of Used Modules
An Xcrypt script should begin with a declaration of the
modules to be included, as follows:

use qw(module-name1 module-name2 . . . core);

Note that the core module must be included.

2.2 Functions for Handling Jobs
2.2.1 Creating job objects
To create job objects, the prepare function is used as fol-
lows:

@jobs = prepare (%template)

%template is a job template object defined as a hash object
that contains information on jobs. Table 1 shows important
keys that a template object should contain. A key name
prefixed with JS_ implies that the corresponding value is re-
ferred to by a batch scheduler configuration script and passed
to the underlying scheduler by following its interface.

Values of before, after, before_in_job, and after_in_job

should be “code references” (anonymous functions or refer-
ences to predefined named functions). Before and after are
procedures that are invoked before job submission and after
job completion, respectively. These procedures are executed
in the Xcrypt process. On the other hand, before_in_job
and after_in_job are procedures executed in Perl processes
run during the job execution. When these functions are
defined, Xcrypt serializes values of user-defined global vari-
ables and the job object to be submitted, and then creates
Perl scripts. These scripts define the global variables whose
values are to be serialized and then invoke before_in_job

or after_in_job. These members are useful for preventing
preprocessings and postprocessings (such as creating input
files and analyzing output files) from being bottlenecks when
plenty of jobs are submitted. We minimized the loss of pro-
grammability by allowing some of the variables defined in
Xcrypt to be read in these procedures. We employed the
Dump::Dumper [9] CPAN module for serialization; the mod-
ule can serialize not only scalar values but also arrays, hash
variables, and functions.

The created job objects basically inherit the members of the
template object and their values. In addition, the job objects
have additional (private or public) members and methods,
such as the member that indicates the current state of a job.

Table 1: Important members of job template objects

Name
(n, m: integers equal to or greater than 0) Meaning

id a string to identify the job
exen a command line to be executed as the job execution

(exe0, exe1, . . . , exen are executed in this order)
argn_m The m-th command line option of exen
JS_cpu # of CPUs required for the job
JS_node # of nodes required for the job
JS_queue name of the queue to which the job is submitted
before a procedure invoked before submitting the job
after a procedure invoked after the job is completed
before_in_job a procedure invoked just before exe0
after_in_job a procedure invoked immediately after all the exens
RANGEn extraction ranges from the template

When the input template object contains RANGEn as its mem-
ber, prepare creates multiple job objects. In this case, the
created job objects are given different ids by postfixing se-
quential numbers: for example, the return value of pre-

pare (’id’=>’example’, ’RANGE0’=>[1..100]) is an ar-
ray of job objects whose ids are example1–example100. When
the values of the members RANGE0, RANGE1, . . . of the tem-
plate object are arrays with lengths n1, n2, . . . respectively,
(n1 ×n2 × . . .) job objects are created. The value of RANGEn
is not limited to successive integers; [3, -5, 2, -10] and
[’--option’, ’--another-option’] are also permissible.

We can ensure that the member values of the created job
objects are different from each other by postfixing @ to the
member names, such as arg0_0@, and we set a function to
the corresponding member value; each member value of the
created job objects is the return value of a given function.
In the function body, the assigned element of RANGEn can
be referred to as the n-th argument (can be referred to by
$VALUE[n]). We will give an example later.

2.2.2 Submitting jobs
We can submit jobs by using the submit function as follows:

submit (@jobs)

@jobs should be an array of job objects created by prepare.
All the jobs contained in the array are submitted.

Details of the submit function are as follows. The submit

function creates a thread, called job thread, for each job ob-
ject. The task of a job thread is as follows.

1. Invoke the user-defined before.

2. Invoke all the before methods defined in the declared
modules in use, in the left-to-right order.

3. Invoke the start method defined for the leftmost mod-
ule among the used modules. The start method in the
core module generates a job script for the batch sched-
uler by referring to configuration scripts, and it sub-
mits a job by using the command for submission pro-
vided by the underlying batch scheduler (e.g., qsub).

4. Wait for the submitted job to be completed.

5. Invoke all the after methods defined in the declared
modules in use, in the right-to-left order.

6. Invoke the user-defined after.

The execution of submit itself is completed after the creation
of job threads.

Job threads are created as lightweight threads by the using
Coro CPAN module [5], which enables us to create thou-
sands of threads at a reasonable memory/time cost.

2.2.3 Waiting for finishing jobs
We can wait for the jobs to be finished by using the sync

function:

sync (@jobs)

It waits for all the job threads corresponding to the job ob-
jects included in the array @jobs to be finished.

2.3 Extension Modules
When only the core module is used, all the job objects
created by prepare are instance objects of the core class.
Developers of Xcrypt libraries can extend Xcrypt by extend-
ing the core class. End users can use such extensions only
by adding the name of the extended class in use.

The manner of implementing extension modules is based
on the manner in which class extension is carried out in
object-oriented Perl programming. In addition, in Xcrypt,
a method named new, before, start, or after has special
meaning, as explained in the previous section.

We can extend the new and start methods to extend or
modify the procedures of creating job objects and submit-
ting them, respectively. We can also define the before/after
methods as additional hooks that are invoked before/after
job execution.

2.4 Batch Scheduler Configuration Scripts
Xcrypt has a mechanism to provide information about batch
schedulers, such as the paths to the qsub (submitting a job),
qdel (canceling a job), and qstat (displaying the status of

use config_common;
use File::Spec;

$jsconfig::jobsched_config{KYOTO} = {
command path
qsub_command => "/thin/local/bin/qsub",
qdel_command => "/usr/bin/qdel -K",
qstat_command => "/thin/local/bin/qstat",
options
jobscript_preamble => [’#!/bin/sh’],
jobscript_workdir => ’$QSUB_WORKDIR’,
jobscript_option_stdout
=> option_with_default(’# @$-o ’, ’stdout’),

jobscript_option_stderr
=> option_with_default(’# @$-e ’, ’stderr’),

jobscript_option_merge_output
=> boolean_option (’# @$-eo’),

jobscript_option_node => ’# @$-lP ’,
jobscript_option_cpu => ’# @$-lp ’,
jobscript_option_memory => ’# @$-lm ’,
jobscript_option_limit_time => ’# @$-cp ’,
jobscript_option_limit_cputime => ’# @$-lT ’,
jobscript_option_queue => ’# @$-q ’,
jobscript_option_group => ’# @$-g ’,
jobscript_option_verbose
=> boolean_option (’# @$-oi’),

jobscript_option_verbose_node
=> boolean_option (’# @$-OI’),

Extract from output messages
extract_req_id_from_qsub_output => sub {

my (@lines) = @_;
if ($lines[0] =~ /([0-9]*)\.nqs/) {return $1;}
else { return -1; }},

extract_req_ids_from_qstat_output => sub {
my (@lines) = @_; my @ids = ();
foreach (@lines) {
if ($_ =~ /([0-9]+)\.nqs/) {push (@ids, $1);}}

return @ids; },};

Figure 1: Batch scheduler configuration script for
the supercomputer in Kyoto University operated
from FY2008 to FY2011 (Fujitsu NQS is installed).

submitted jobs) commands, independently from end user
scripts.

For example, the configuration script for Fujitsu NQS and
LSF, which are installed on the former and current super-
computer system of Kyoto University, are defined as shown
in Figure 1 and Figure 2, respectively. These scripts specify
the paths to the qsub, qdel, and qstat commands, how to
get request IDs from outputs of qsub and qstat, how to re-
quest the required number of CPUs from the scheduler, and
so on.

A parameter named jobscript_option_name corresponds
to the member named JS_name of job objects. Xcrypt refers
to jobscript_option_name to know the format for speci-
fying the job option and refers to JS_name to get the cor-
responding option value. Ther jobscript_other_options

parameter in Figure 2 is used when a parameter given to
parameter does not correspond one-to-one with a member
of a job object.

For example, when a job object contains the following mem-
bers:

use config_common;
use File::Spec;

$jsconfig::jobsched_config{KYOTO-LSF} = {
command path
qsub_command => ’/usr/share/lsf/.../qsub <’,
qdel_command => ’/opt/dpc/bin/qkill’,
qstat_command => ’/usr/share/lsf/.../qjobs’,
options
jobscript_preamble => [’#!/bin/sh’],
jobscript_option_stdout
=> workdir_file_option(’#QSUB -oo ’, ’stdout’),

jobscript_option_stderr
=> workdir_file_option(’#QSUB -eo ’, ’stderr’),

jobscript_option_merge_output
=> boolean_option (’# @$-eo’),

jobscript_other_options => sub {
my $self = shift;
my $node = $self->{JS_node} || 1;
my $cpu = $self->{JS_cpu} || 1;
my $thread=$self->{JS_thread}||$cpu;
my $memory=$self->{JS_memory}||(61440/16*$cpu).’M’;
return
"#QSUB -A p=$node:t=$thread:c=$cpu:m=$memory";},

jobscript_option_limit_time => ’#QSUB -W ’,
jobscript_option_queue => ’#QSUB -q ’,
jobscript_option_group => ’#QSUB -ug ’,
Extract from output messages
extract_req_id_from_qsub_output => sub {
my (@lines) = @_;
foreach my $ln (@lines) {
if ($ln =~ /Job\s+<([0-9]+)>\s+is/) {return $1;}}

return -1; },
extract_req_ids_from_qstat_output => sub {
my (@lines) = @_; my @ids = ();
shift (@lines); # no ID included in the first line
foreach (@lines) {
if ($_ =~ /^\s*([0-9]+)\s+/) {push (@ids, $1);}}

return @ids; },};

Figure 2: Batch scheduler configuration script for
the supercomputer in Kyoto University operated
from FY2012 (LSF is installed).

JS_node=>4, JS_cpu=>16,

JS_thread=>32, JS_memory=>’28G’,

Xcrypt (the job script generator invoked by core::start

method) generates a job script that include the following
lines:

@$-lP 4

@$-lp 16

@$-lm 28G

for NQS and the following line:

#QSUB -A p=4:t=32:c=16:m=28G

for LSF. Note that JS_thread is ignored for NQS since
the way of handling the member is not defined in Figure 1.
Indeed, this version of NQS does not take the parameter
for specifying number of threads. In contrast, the ways of
handling JS_verbose and JS_verbose_node are defined in
Figure 1 and not defined in Figure 2. Thus, these members
are available for NQS but ignored for LSF.

We wrote configuration scripts also for Hitachi NQS, SGE,

[environment]
sched = KYOTO
[template]
JS_queue = myqueue

Figure 3: An example of a user configulation script.

Table 2: Status of jobs in Xcrypt

State name Description

initialized The job object was initialized
submitted The job was submitted to the batch scheduler
queued The job submission was successful
running The user application program is running
done The user application program has been run
finished All the tasks of the job thread finished
aborted The job is abnormally completed

and Torque environments and tested that Xcrypt works on
these systems.

2.5 User Configuration Scripts
In Table 1, the value of JS_queue should differ with the sys-
tem on which Xcrypt is executed. However, we cannot define
the value in the batch scheduler configuration script because
the value also depends on the user. For such parameters,
Xcrypt provides the mechanism of user level configuration
scripts.

Figure 3 shows an example of a user configuration script.
When this script is loaded, the member value of JS_queue
of a generated job object is set to myqueue if the value is not
defined explicitly in the argument of the prepare function.
This script also says that Xcrypt uses the KYOTO configura-
tion script as the default configuration script.

Owing to the use of these two types of configuration scripts,
we can completely remove system-dependent pieces of code
from Xcrypt scripts.

3. IMPLEMENTATION
3.1 Overview
Almost the entire Xcrypt system is implemented as Perl
modules. When Xcrypt is executed with an Xcrypt script, it
performs simple translations of the script and executes Perl
with the translated script. The translation includes the ad-
dition of declarations, some necessary global variables, and
top-level statements to create two background threads: one
for communicating with jobs and the user interface and the
other for monitoring the status of jobs.

3.2 Managing States of Jobs
Xcrypt internally manages all the created jobs by construct-
ing a set of pairs (ID, state). Table 2 shows a list of the
status and Figure 4 shows the state transition diagram.

A job object is“initialized”just after it is created by prepare.
Then, it becomes“submitted”when the job submission com-
mand is executed in start, and becomes “queued” when
Xcrypt is notified that the submitted job is successfully
queued by the output message of the job submission com-
mand.

Table 3: Skipped method/function invocations when
Xcrypt is re-executed (“S” implies skipped).

State prepare before start after sync

initialized
submitted S
queued S S
running S S
done S S S
finished S S S S
aborted

In order to make transitions to“running”and“done,”Xcrypt
has to be notified by the job, which is generally assigned to
other nodes, that the job has been started and completed.
Thus, Xcrypt generates a job script that executes the fol-
lowing commands:

inventory_write ID running

(Execute Perl to invoke before_in_job)
./a.out0 arg0_0 arg0_1 . . . # exe0

· · ·
./a.outn argn_0 argn_1 . . . # exen
(Execute Perl to invoke after_in_job)
inventory_write ID done

The inventory_write command notifies Xcrypt running on
hostname that the status of job whose id is ID has become
“running” or “done,” by using some communication method
(such as TCP/IP communication or creating a file in NFS).
Then the Xcrypt’s communication thread can detect the no-
tification and update the job’s status.

When a job running on computation nodes is suddenly aborted,
the Xcrypt’s monitoring thread can detect it by periodically
executing qstat and checking its output. Xcrypt judges that
a job is“aborted” if the job is“queued”or“running”but does
not appear in the output of qstat.

3.3 Restoring the Execution State
Even if an Xcrypt process is aborted because of an some ac-
cident such as a node down, we can restore the original state
quickly solely by re-executing Xcrypt with the same Xcrypt
script if the Xcrypt script satisfies the following conditions.

• The same id is assigned to the same job even in the
re-execution.

• It is permissible for side effects such as the creation of
input files to occur again.

Xcrypt saves the log that contains a record of all the state
transitions of the jobs. The restoration mechanism skips
previously executed tasks when Xcrypt is re-executed. More
concretely, if the job has previously been executed, invoca-
tions of before, start, after, and sync are skipped depend-
ing on the last state in the previous execution (see Table 3).
Jobs that are being re-executed are recognized from their
ids.

4. EXAMPLES

initialized

submitted

queued

running

done

finished

aborted

the job object has been created

qsub executed

qsub successful

program started

not found in
the batch queue

not found in
the batch queue

qsub failed

program executed

application of all the
after methods
finished

Figure 4: State transitions of Xcrypt jobs.

use base qw(limit core); # use the limit module
limit::initialize(10);

%template = (
’id’ => ’psweep’, # job’s ID
’RANGE0’ => [1..5000], # extraction range
’exe0@’
=> sub {"./a.out input$VALUE[0] output$VALUE[0]"}

);
prepare_submit_sync(%template); is also allowed
@jobs = prepare (%template);
submit (@jobs);
sync (@jobs);

Figure 5: Xcrypt script for parameter sweep.

4.1 Parameter Sweep
4.1.1 User script
Figure 5 shows a simple Xcrypt script that submits 5000
jobs that execute the single program a.out; each job uses a
different command line arguments, and simultaneously run-
ning (or queued) jobs are limited to 10.

As the example shows, a typical Xcrypt script consists of
the following components:

• preamble that specifies modules to be loaded, initial-
izes some global parameters, and so on,

• definitions of job templates, and

• function calls to prepare for submitting jobs, submit
the jobs, and wait for the jobs (job threads) to be
finished.

Because the template has the member RANGE0 with the value
[1..5000], prepare generates 5000 job objects with ids
psweep1–psweep5000.

The command line to be executed in a job is defined by
exe@. Because command line arguments (input and output
file names) differ from job to job, the member name is post-
fixed by “@” and its value is a function. In the function
body, $VALUE[0] binds the corresponding value in RANGE0

(1–5000).

package limit;

use strict;
use NEXT;
use Coro::Semaphore;

my $smph;

sub initialize {
$smph = Coro::Semaphore->new($_);

}

sub new {
my $class = shift;
my $self = $class->NEXT::new(@_);
return bless $self, $class;

}

sub before {$smph->down;}
sub after {$smph->up;}

Figure 6: Definition of the limit module.

4.1.2 Extension module
The script in Figure 5 includes the limit module, the mod-
ule for limiting the number of simultaneously running (or
queued) jobs. This module requires end users to specify
the limit number in the limit::initialize, which is in the
second line in the script.

The limit module is implemented as shown in Figure 6.
When this module is used, the semaphore is acquired be-
fore the submission of each job, and it is released after
the completion of each job. The number of simultaneously
running (or queued) jobs cannot exceed the number set by
limit::initialize since job threads of excess jobs wait for
acquiring a semaphore.

Figure 7 shows the execution flow of the script in Figure 5.

4.2 Optimal Parameter Search Using Bisec-
tion Method

Figure 8 shows the script for finding the solution of f(x) =
0 using the bisection method. One computation of f(x)
is done by one job execution. This is not a job involving
“parallel”processing because only one job is executed in each
iteration. However, Xcrypt is also useful for such sequential
job processing.

core::after

wait for application of the after
methods to be finished

 limit::after

sync

 prepare
limit::new

core::new create a working directory

(for each job object)

array of job objects

a job template object

 submit

limit::before

core::before

acquire a semaphore

create a job script

submit (qsub) a job

limit::start

core::start

Job

(for each job object)

release a semaphore

array of job objects

array of threads

array of threads

array of job objects

wait for job completion

(not defined)

(not defined)

(not defined)

Figure 7: Execution flow of the script in Figure 5 (broken lines indicate asynchronous executions).

Note that this example represents a real application [6]: ob-
taining the amount of electrostatic charge f(x) on the satel-
lite when the amount of plasma discharge is x. The program
is parallelized at the program level using MPI.

This script uses the sandbox module. If this module is
loaded, then when prepare is invoked, a working direc-
tory for each job is automatically created and files labeled
copiedfilen are copied to the directory.

The process corresponding to iteration of the until loop is
as follows.

1. Create a job object by calling prepare. Prepare also
creates a working directory for the job and copies the
two specified files to the directory.

2. Create an input file for the job by modifying the copy
of plasma.inp in the working directory. This input file
is a FORTRAN namelist. KeyValueReplace replaces
the value of wp(3) (x) with the value of $wpem.

3. Submit the job and wait for it to be finished.

4. Extract the necessary part (the third column of the
last line) of the output file to get the value of f(x).

5. Exit the loop if |f(x)| is sufficiently small. Other-
wise, proceed to the next iteration after narrowing the
search range.

In the next iteration, the template object used in the previ-
ous iteration can be used. However its id should be modi-
fied to give it a new id. Nevertheless, the job execution is
skipped as Xcrypt judges the job to have been finished.

This example shows that Xcrypt is flexible. We can describe
an execution flow using Perl’s control flow constructs such
as if, until, and foreach. Furthermore, Xcrypt’s addi-
tional features enable us to glue job executions seamlessly
as components of the execution flow.

The modules Data_Generation and Data_Extraction used
in lines 2 and 3 are included in the library that we have de-
veloped as part of the Xcrypt system. Of course, we can use
legacy Unix tools such as grep, sed, and awk to generate in-
put files and extract data from output files for a huge number
of jobs. However, it is not very easy for users who are unfa-
miliar with regular expressions to generate a large number
of FORTRAN namelists that are slightly different from each
other or to extract certain elements from an output file that
represents a matrix. These generation/extraction libraries
provide higher-level interfaces specialized for use in com-
putational science, for example, for the purpose of modify-
ing a FORTRAN namelist and extracting data from output
files by specifying row and column numbers. In addition,
these libraries support huge files (>Gbytes). While näıve
implementations of text processing tend to load the entire
input/output file onto memory, our libraries are designed to
work with reasonable memory consumption through the use
of a buffering mechanism.

5. PERFORMANCE
The overheads of job level parallelization with Xcrypt in-
clude the scheduling cost of a batch scheduler and the cost
of Xcrypt’s tasks such as creating job objects and generating
job scripts. The scheduling cost depends on the implemen-
tation of the underlying batch scheduler. On the super-
computer of system Kyoto University with NQS, the total
overhead is sufficiently low when the execution time of each
job is longer than several tens of seconds.

6. ADVANCED FEATURES
This section shows some remarkable additional features of
Xcrypt and extension modules we have implemented.

6.1 Remote Job Submission
Xcrypt provides a remote job submission facility. It enables
us to run Xcrypt process not on a login node of the su-
percomputer system but on a local computer. When this
facility is activated, Xcrypt makes a SSH connection to the
login node and execute the qsub, qdel, and qstat commands
on the login node via the connection. Although transfer of

use the sandbox module
use base qw(sandbox core);
use Data_Generation;
use Data_Extraction;

%template = (
’id’ => ’bisec’,
’exe0’ => ’mpiexec -n 64 ’

. ’./mpikempo3D 4 4 4 <plasma.inp’,
’JS_node’ => 64, # # of MPI processes
’JS_cpu’ => 1, # # of cores per process
files to be copied to the working directory
’copiedfile0’ => ’mpikempo3D’,
’copiedfile1’ => ’plasma.inp’,
);

my $wpe1 = 1.0; my $wpe2 = 1.5;
my $phi = 1;

Iterate until the error becomes smaller than 0.1
until (abs($phi) < 0.1) {
The value of x
my $wpem = ($wpe1+$wpe2)/2;
Update the job’s id
$template{id} = $template{id} . ’+’;
Create a job object
my $job = prepare(%template);
Modify the input file
my $generator = Data_Generation

->new ("$job->{id}/plasma.inp");
$generator->KeyValueReplace (’wp(3)’, $wpem);
$generator->Execute();
Submit the job and wait for finishing it
submit_sync($job);
Extract f(x) from the output file
my $extractor = Data_Extraction

->new ("$job->{id}/result.dat");
$extractor->LastLine();
$extractor->GetColumn(3);
$phi = $extractor->Execute();
Output f(x)
print "Potential: ", $phi, "\n";
Narrow the range according to the value of f(x)
if ($phi < 0) { $wpe1 = $wpem; }
else { $wpe2 = $wpem; }}

print "When wp(3) = ", $wpem, ",\n";
print "phi = ", $phi, ".\n";

Figure 8: Bisection method in Xcrypt.

input/output files and execution files needs to be done man-
ually, we provide handy APIs for it.

Figure 9 shows an example of using the remote job submis-
sion facility.

This facility is useful especially for systems in which running
processes on a login node is limited by its system policy.
You can also use this feature to write a single script that
performs job parallel processing among multiple different
supercomputers.

6.2 Spawn-sync Style Notation
Xcrypt allows us to write a script in a multithreaded lan-
guage style as shown in Figure 10, which is almost equivalent
to Figure 5. In this script, spawn is used instead of prepare
and submit. The spawn submits a job to execute its body;
the procedure of the body is serialized (using the same mech-
anism used for before_in_job and after_in_job) and in-
voked in a Perl process during the job execution. Note that
the global variable $i can be referred to from the spawn
block since it is also serialized and sent to the Perl process.

use base qw(limit core);
limit::initialize(10);

define a remote login node
my $env1 = &add_host({

’host’ => ’user@supercom.kyoto.ac.jp’,
’sched’ => ’KYOTO-LSF’});

put_into ($env1, ’input*.txt’); # send input files
put_into ($env1, ’a.out’); # send an execution file
%template = (
’id’ => ’psweep’,
’RANGE0’ => [1..5000],
’exe0@’
=> sub {"./a.out input$VALUE[0] output$VALUE[0]"}

);
@jobs = prepare (%template); submit (@jobs); sync (@jobs);
get_from ($env1, ’output*.txt’); # receive output files

Figure 9: Xcrypt script using the remote job sub-
mission facility.

use base qw(limit core);
limit::initialize(10);
foreach $i (1..5000) {

spawn {
system("./a.out input$i output$i");

} (id => "psweep$i");
}
sync;

Figure 10: Xcrypt script in a spawn-sync style no-
tation.

This feature is useful when you already have a Perl script and
want to execute some part of procedures as jobs. Further
examples will appear in [1].

6.3 Extension Modules
We implemented several useful extension modules besides
limit and sandbox. They include the dependency module,
which enables us to describe dependency among jobs declar-
atively. For example, let $j1, $j2, and $j3 are job objects.
Then we can write:

$j1->{depend_on} = [$j2, $j3];

to indicate that $j1 must be executed after $j2 and $j3

are finished.

We also implemented the dry module for dry executions, the
bulk module to combine multiple job objects and execute
their bodies in a single job. In addition, we developed “algo-
rithm modules” for divide-and-conquer, tree search, and the
Monte Carlo method. These modules enable us to perform
these algorithms only by defining application-dependent pa-
rameters.

7. CONCLUSION AND FUTURE WORK
This paper proposed a job level parallel script language
named Xcrypt. Xcrypt relieves us from various annoying
tasks such as writing job scripts for batch systems, gener-
ating/analyzing a huge number of input/output files, and
managing states of asynchronously running jobs, and it can
be made to run a wide variety of job level parallel processing
by writing simple scripts.

Future work includes the evaluation of the performance and
usability of the system by considering more practical and
large-scale examples. We will also develop multilingualiza-
tion support for Xcrypt to enable us to write scripts in lan-
guages other than Perl (e.g., Ruby and Python); this will
involve the development of a foreign function interface (FFI)
between Perl and other languages so that we can implement
interfaces for various languages at low cost.

Xcrypt is now available at http://super.para.media.kyoto-u.
ac.jp/xcrypt.

8. ACKNOWLEDGMENTS
This work was partly supported by a MEXT Grant-in-Aid
for “Research and Development of Software for System In-
tegration and Collaboration to Realize the E-Science Envi-
ronment.”

9. REFERENCES
[1] T. Abe and M. Sato. Auto-tuning of numerical

programs by block multi-color ordering code
generation and job-level parallel execution. In The
Seventh International Workshop on Automatic
Performance Tuning (IWAPT2012), Jul 2012. (to
appear).

[2] Cluster Resources Inc. Torque resource manager.
http://www.clusterresources.com/pages/

products/torque-resource-manager.php.

[3] P. Computing. Platform LSF: The HPC workload
management standard.
http://www.platform.com/workload-management/

high-performance-computing/lp.

[4] Fujitsu, Inc. HPC middleware Parallelnavi.
http://jp.fujitsu.com/solutions/hpc/products/

parallelnavi.html (in Japanese), installed on the
supercomputer system of Kyoto University.

[5] M. Lehmann. Coro: the only real threads in perl.
http://search.cpan.org/~mlehmann/Coro-5.372/.

[6] Y. Miyake and H. Usui. New electromagnetic particle
simulation code for the analysis of spacecraft-plasma
interactions. Physics of Plasmas, 16(6):062904, 2009.

[7] National Institute of Informatics. NAREGI
Middleware WFT (GUI Workflow Tool) Users Guide.
http://middleware.naregi.org/Download/Docs/

UG-NAREGI-WFT-e.pdf.

[8] K. Ohno, M. Matsumoto, T. Sasaki, T. Kondo, and
H. Nakashima. An adaptive scheduling scheme for
large-scale workflows on heterogeneous environments.
In Proc. Intl. Conf. Parallel and Distributed
Computing and Systems, Nov. 2009.

[9] G. Sarathy. Data::dumper: stringified perl data
structures, suitable for both printing and eval. http:
//search.cpan.org/~smueller/Data-Dumper-2.128/.

[10] K. Seymour, H. You, and J. Dongarra. A comparison
of search heuristics for empirical code optimization. In
CLUSTER, pages 421–429. IEEE, 2008.

[11] Sun Microsystems, Inc. The grid engine project.
http://gridengine.sunsource.net/.

[12] H. Yuyama, T. Tsumura, and H. Nakashima.
Construction of accurate task models for the
MegaScript task parallel language. IPSJ Trans.

Advanced Computing Systems, 46(12):181–193, Aug.
2005. (in Japanese).

